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INTRODUCTION 

As this investigation is limited to ducted propeller aerodynamics 

the following conclusions are, in general,  restricted to this field with 

reference to other types for purposes of comparison or to emphasize 

differences.    The present treatment is perfectly general and not intended 

to cover any particular design or to give elementary design data.    The 

purpose is,  on the other hand,  to illuminate the fundamental knowledge 

required to arrive at a preliminary layout which,  at a later stage,  does 

not provide undesirable and unexpected surprises. 

It is perfectly clear that such a considerable departure from the 

theory of conventional aircraft can be handled effectively only by engineers 

or scientislswell skilled in the treatment of complex airflow problems. 

It should be noted that the actual performance can be predicted with 

considerable precision since,  with a few exceptions,  no really unknown 

factors are involved.    Let us take as an example the propeller or fan 

itself.    In the first place, it is perfectly well known that the propeller 

efficiency reaches its maximum only with uniform circumferential and 

a prescribed and predictable radial load distribution.    Since the propeller 

is or may be located in a duct,  it is quite obvious that,  in addition,  the 

flow pattern of the duct itself must be known. 
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This particular problem has been treated in detail in Ref. Al, 

Chapter IV and the universal flow lines are shown in Figures I and 11 of 

this reference.    These are the exact flow lines which correspond to the ideal 

case of uniform downflow velocity at the plane of the propeller.    Great 

confusion has existed on this problem due to a lack of basic understanding. 

By inspection of the pattern of the ideal streamlines,  any one of which may 

represent the wall of the duct inlet,  it should be noticed that any smaller 

radius of curvature of the duct entrance results unavoidably in an increase 

in the inlet velocity at and near the wall.   A standard type propeller operating 

in this inlet will thus be unloaded at the tip producing a condition quite 

detrimental to the efficiency of the propeller.    Conversely,  the inlet must be 

designed as shown in Ref. Al in order to reach maximum efficiency with a 

normal type propeller,  that is a propeller designed to operate in a circular duct. 

The second step in the procedure is then to obtain the load distribution 

on a multiblade propeller in a circular infinitely long duct.    The theory of the 

optimum loading of propellers has been given by Prandtl,  and with more 

refinement by Goldstein (Ref. A2).    For counter rotation propellers which are 

desirable for heavier loading,  the general theory is given by Theodorsen (Ref. 

A3).    However,  the actual case of a propeller in a circular duct,   single or 

counter rotating,  has not been specifically treated in any of the above refer- 

ences,  being of no significance at the time.    The single rotating case has been 

treated in the present investigation in Section B.   Both the loading functions 



and the mass coefficients are expressed by appropriate formulas. 

Numerical results and graphs remain to be processed.    With such 

tables and graphs available for multiblade propellers the ideal propeller 

can be designed with perfect accuracy. 

It may be remarked that although the duct -streamlines are 

independent of the magnitude of the flow velocity,  the propeller itself 

has to be designed for a prescribed velocity and thrust.    As the take- 

off condition requires the highest power and efficiency,  the propeller 

twist distribution must be designed to fit this case.    If a variable pitch 

propeller is employed,  the loss in efficiency is not excessive as the thrust 

is being reduced.    However,  any decrease in the angle of attack of the 

propeller will decrease the loading at the tip relative to that at the root 

section.    This is particularly true if the design employs a relatively low 

lift coefficient. 

In summary, to obtain the most efficient duct-propeller com- 

bination,  the duct,  whenever possible,   should be designed with internal 

flow-lines so designed as to provide a uniform flow over the inlet area 

at the location of the propeller.    The propeller will then be designed for 

the ideal load distribution.   Experimental checking either on full scale or 
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on models is not at all required,  if and when the ideal combination 

may be employed. 

If and when deviations from the ideal case of duct design are 

unavoidable,  it is still possible to estimate very nearly the resulting 

radial non-uniformity of the inflow and correct the blade angle distri- 

bution of the propeller accordingly.    Only if drastic deviations from 

the ideal inlet are employed may it be desirable to run a final ex- 

perimental check rather than to obtain the services of an organization 

sufficiently qualified to obtain the ideal combination by direct calculations. 

As a further remark it is stated that the complimentary combination 

always exists:    for any duct design, the complimentary propeller is a 

matter of proper design.    This point must not be overlooked,  since any 

deficiency reflects itself directly in the weight of the power plant and in 

the fuel consumption. 

As v/e are not,   in particular,   referring to any specific design,  we 

shall,  nevertheless,  note that there exists somewhat of a difference between 

the case of a propeller in a wing and the case of a free duct a-la-Doak,    In 

the latter case the numerical calculation of the flow velocity in the inlet 

plane in the take-off condition is quite complex.    However,  it is possible 

to estimate, at least to the first order of magnitude,  the effect of any 

particular radius of curvature at the duct inlet.    The velocity at the propeller 

tip will be somewhat greater than the average and a corresponding correction 

must be applied to the propeller twist distribution.    Experimentally, if 
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theoretical determination is unavailable,  one need only insert the duct as 

an extension of a long cylindrical pipe of the same diameter as that of the 

duct exit,  apply a suction at the other end and measure the radial velocity 

distribution at the plane of the location of the intended propeller.    With 

the other data available the propeller may thus be fully specified.   It 

should be emphasized that the duct enclosing the propeller is not necessarily 

beneficial.    We shall discuss this matter briefly.    (See also Volume IV.) 

Favoring the duct arrangement are the following facts: 

1. The propeller diameter is reduced.    The theoretical 

limit of such reduction as shown in the first report 

(Ref. Al) is in the order of 30% based on the diameter 

of the free propeller,  but actually,   depending on the 

case,  only about 10 to 15%. 

2. The RPM of the propeller and the related shafting and 

gearing is (correspondingly) higher resulting in a saving 

of weight. 

The adverse factors are as follows: 

1.        Skin friction of the duct walls has been added to that of 

the assembly.    Based on the area of the duct,  the 

solidity of the propeller and the flow velocities,  it will 
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be found that the duct loss generally outweighs the 

reduction in propeller skin friction loss.   Again there 

is a limit:   If the propeller is heavily loaded a balance 

may result.    No credit should be given to the duct as 

a lifting surface since the critical situation exists at 

take off and in transition,  in which cases any potential 

lifting capacity is destroyed by stalling. 

Z.        Adverse is,  of course,  also the effect of the weight 

of the duct.    This must be balanced against the decrease 

in weight of the shafting and gearing.   Adverse is also 

the external drag of the duct. 

The effects of transition or forward speed, will be discussed 

next.    It is quite essential to be aware of these effects in the early 

design stage to avoid later difficulties.    The most essential require- 

ment is an understanding of the nature and magnitude of the various 

effects. 

Pitch-up moments are the first in line to be considered.    Large 

pitch-up moment represents an inherent deficiency of the propeller-in- 

wing arrangement.    It has been shown in the previous investigation 

{Ref. Ai,   Chapter II) that for a propeller inserted in a surface of area 

A  there exists an associated pitch-up moment equal to the full momentum 
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drag times a distance equal to one half of the "mean radius" of the 

area  A   and,  as may be noted, fairly independent of the shape.   It 

should be pointed out that this moment cannot be eliminated by baffles 

or any other means as has sometimes been attempted. 

In the case of shrouded propeller a-la-Doak, the case is less 

serious.    The adverse pitching moment is reduced with forward tilt of 

the propeller axis as has been shown in Ref..Al (Page 106),,   Also the 

numerical value of the moment is smaller.    The momentum of the 

inlet air-column attacks with an arm of approximately one half the radius 

of the bellmouth at zero tilt angle.   As the tilt angle is increased the arm 

is reduced to offset the gradual increase in the absolute magnitude of the 

momentum drag with forward speed.   Also,  the propeller itself has a 

slightly favorable pitching moment.    This is caused by the fact that the 

air enters the propeller disk with more downward velocity at the front 

edge and correspondingly less velocity at the rear.    This contribution 

to cancel pr.rt of the pitch-up moment is relatively more effective in the 

case of the separate duct. 

Finally,  the pitch-up moment of a free propeller may be mentioned. 

From the theory of a lifting surface it can be concluded that the lift force 

is as always concentrated near the front quarter chord.    This fact has been 

confirmed by tests   (See Ref.AL,  Page 106 and Figures l6l and 165).    The 

magnitude of the pitch-up moment is quite considerable but with the lift 

force maintained constant the value of the moment does not change 
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appreciably with forward speed so in this hypothetical case the effect 

may be eliminated by choosing the proper location of the hypothetical 

free lift propeller with respect to the center of gravity of the aircraft. 

To summarize:   The propeller-in-wing type suffers from an 

inherent adverse pitching moment of considerable magnitude.    The 

numerical values may be obtained with considerable accuracy by use 

of the methods given in the previous report   (Ref. Al).     The propeller- 

in-duct case is more favorable as the acting moment arm is smaller 

and is gradually decreased in transition to forward speed.    The hypo- 

thetical case of a free propeller is essentially free of the defect. 

Transition effects on propeller or fan efficiency is a serious 

matter.    The problem is closely related to the problem of propeller 

operating life as function of vibratory stresses.   A free propeller is 

thus out of the question, and a helicopter design is necessary.    The 

basic intent of the duct design is,   of course,  to force the flow to 

become more realigned with the propeller axis. 

As contrasted with the case of a free propeller,  the opposite 

case is a propeller with a long entrance duct.    The propeller would 

then,  if designed according tp theory,  reach full efficiency and would 

not be exposed to vibratory stresses caused by the unsymmetric flow 

pattern.    As the duct may be shortened,  the efficiency of the lifting fan 

will gradually decrease as a function of the nonsymmetry of the flow 
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pattern.    The center of lift of the fan will gradually move from the 

axis toward the rear and laterally into the advancing quadrant.   Anyone 

skilled in the art can calculate with adequate precision the effect of a 

given travel on the efficiency of the propeller.   Also, the corresponding 

one-per-turn vibratory stresses can be estimated with adequate accuracy. 

In regard to the required length of a duct it is again clear that the 

case of the fan in the wing is again in the most unfavorable position.    The 

fan-in-fuselage and the separate ducts are more favorable.   Another 

parameter of equal importance is the ratio of forward speed to that of the 

fan tip velocity.   A low value of the aircraft forward speed to the fan inlet 

velocity is,  of course,  beneficial.    An example of such favorable combi- 

nation is thus the GE high pressure fan type when installed in a fuselage. 

To prevent excessive vibratory stresses and to improve the fan 

efficiency it is desirable to employ inlet vanes.    These cannot be treated 

in a general case and present quite a difficult construction problem if they 

are to gl^e high efficiency in the entire transition range.    An example of a 

simple deflection grid is treated in Sections G,  H,  and I of the present 

report. 

Another effect apparent in the transition to forward flight is an 

interference effect between the fan-in-wing and the wing itself.   In Ref.Al, 

Chapter III is presented the classical solution of a wing with a sink on the 

upper surface and a line jet issuing from the lower side.    These results 
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are exact and show that the circulation is increased by the action of 

the propeller in an amount given by the expression III-18 on Page 25 

of reference report.    The direct contribution of the propeller is given 

by the standard expression III-19 on Page 26.   Finally, the classical 

expression for the moment arm of  the pitch-up moment in terms of the 

half chord of the wing is given for the two-dimensional case by the 

expression 111-21 on Page 27. 

We shall next consider another very important interference 

effect.    In the theoretical treatment,  Ref.Al, the jet was treated as a 

line jet issuing from the lower surface in order to obtain the essential 

facts of a complex problem.   However,  the jet is of considerable 

dimensions and in the present report the displacement jet on the wing 

proper has been investigated.    The two-dimensional pattern of the flow 

around a cylinder and the pressure distribution on a flat plate perpen- 

dicular to the cylinder is also known.    By reference to Section E of this 

work it may be seen that the loss of lift on the area adjacent to the jet 

approaches the value   C    a   - 1   based on the area of the jet itself.    This 

is a theoretical fact:   There is a lift reduction caused by the displacement 

of the jet which has to be or may be recovered by   a noticeable change in 

the angle of attack of the wing.    If the wing area is ten times the jet cross 

section,  the angle of attack of the main wing must be increased by about 

one degree.    This gives an indication of the magnitude of this   loss of lift. 
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A more serious effect is,  however,  that of the negative pressure 

region existing behind the jet as a result of the breakdown of the air flow 

around the jet.   An investigation has been conducted under Section F to 

clarify the situation,  based on the theoretical study in Section E and on a 

series of experiments conducted by NASA on cylinders and jets at right 

angles to a flat plate and with the airstream perpendicular to the cylinder 

or jet.    Incidentally, the data confirm closely to the theoretical data for 

the front area ahead of the cylinder.    Behind the jet exists,  however,  a 

large negative pressure region resulting in a negative lift coefficient of 

CT =   -3 and an adverse moment coefficient of about   C, , r 6 based on the 

area and the radius of the jet,  respectively.    These values are,  however, 

obtained for low Reynolds number below the critical value of the drag 

coefficient of a cylinder. 

There is little doubt that the negative area behind the jet is,  to a 

large extent,   caused by the pumping action of the jet which blows the 

passing main airstream downward due to the mixing at the intersurface. 

The normal negative region observed behind a solid cylinder is thus 

intensified by the downward momentum imposed on the airstream by the 

jet.    The presence of any extended surface behind the jet will,  therefore, 

contribute to the magnitude of pitch-up moment.    On the whole it must 

therefore be stated that the fan-in-wing design is not justified from 

aerodynamic reasons only. 
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RECOMMENDATION ON FURTHER RESEARCH 

There appears to be at least two distinct problems which   might 

advantageously be subject to further research.. 

The first field is the calculation of propeller load distribution 

for a multiblade propeller in a circular duct,  based on the formulas of 

Section B of the present volume. 

The second problem is the basic study over a wide range of 

Reynolds number of the obstructive effect and the "pumping action" of 

a jet on the flow pattern and pressure distribution on the lower surface 

of an airfoil or more generally on any extended plane surface parallel 

to the airstream.    This work would be conducted and would represent 

an extension to the study reported in Section F and would serve as a 

master reference for special cases and might possibly be of such 

general value as to obviate investigations of individual cases as 

proposed above. 
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SECTION  A 

GENERAL METHODS FOR THE DESIGN OF VERTICAL TAKE-OFF 

AIRCRAFT 

In the following is given a condensed summary of the design 

information that has been produced by the work of the present and the 

immediately preceeding investigation reported in Ref. Al.    The work 

covers the aerodynamic aspects of the problem and is presented under 

separate headings indicated below.    The purpose of the presentation is 

to provide a basis for rational design methods based on a theoretical 

analysis of each problem and supported by complimentary experiments 

in partici'iar cases. 



The following types of aircraft are under consideration or may 

be of interest: 

1, Flying platforms or "jeeps". 

2. Lifting propellers in wing or fuselage. 

3. Direct jet-lift and propulsion. 

4, Combination of lifting propellers and jet propulsion 
with means for conversion during transition. 

The aerodynamic problem which is the restricted subject of the 

present investigation may be divided into the following subjects: 

1. Propeller or fan. 

2. Duct design. 

3. Problems of combination of propeller and duct. 

4. Baffles and inlet vanes. 

5. Interaction of ducted propeller and wing or fuselage. 

6. The effect of the jet on the lower surface of wing or fuselage. 



It is conceivable that one or more of the four types of aircraft 

indicated above may arrive at a practical stage and become generally 

operational.    In the meantime,  it is essential to arrive at the basic 

design philosophy to the extent that ail the fundamental aspects of the 

problems are understood.    The aerodynamic considerations are covered 

under the above headings as other problems are of a nature common to 

any aircraft.    We shall briefly cover the listed subjects and give reference 

to the appropriate treatment given in this presentation. 

1.    Propeller or Fan 

The propeller design problem represents a rather straightforward 

case,   except that the propeller in a duct must comply with the design 

instruction given by the formulas in Section B of the present report.    In 

contrast to the case of the normal type propeller employing the Goldstein 

load-distribution or the contra-rotating type with the distribution given by 

the author,   the prese   t case of a propeller in a circular duct requires a 

radial loading which increases towards the tip.    Tables for this case are 

not yet available.    However,   anyone skilled in the art of the propeller 

theory can obtain approximate graphs for the loading of multiblade 

propellers in a circular duct based on the formulas of Section B. 

Design Method:    Comply with the condition of ideal disk loading given in 

Section B.    (Tables not yet available. ) 



2.    Duct Design 

Duct streamlines for an ideal duct are given in Ref.Al, Volume I, 

Chapter IV, and in Figures I and II, Pages 72 and 73.   It may be possible 

to design an ideal duct in some cases.    The ideal duct is defined as a duct 

whose inlet wall conforms to any one of the streamlines shown in these 

figures.   Such a duct as distinguished from any other duct provides a 

constant axial component of the inlet velocity at the plane of the propeller. 

Any other duct design,  for instance   the bellmouth duct,   causes deviations 

from the ideal case by producing an excess velocity at the circumference 

or at the tip of the propeller. 

Design Method;   Employ the ideal streamline shape when possible or 

obtain radial velocity distribution in any other case by calculation or,  if 

necessary, by a model test. 

3.    Problems of Combination of Propeller and Duct 

The ideal cases of propeller and duct defined above fit together 

perfectly.    If deviations are necessary,  as is usually the case in the duct 

design,   calculate the resulting velocity distribution,  which normally 

exhibits an increase in the velocity near the circumference.    Such is the 

case both for short ducts and for bellmouth ducts.    This work can only be 

done by engineers skilled in the art and has to be done as each case will 

be different.   Experimental models or the electric analogy method may 

also be employed.    In designing the propeller, make the twist distribution 



comply exactly with the particular axial velocity distribution, but 

maintain the loading as in the ideal case. 

Design Method:   Match propeller with particular imposed axial velocity 

distribution of the duct proper. 

4.   Baffles and Inlet Vanes 

As the propeller,  under no circumstances, will operate efficiently 

with a non-uniform or skewed flow distribution, there are obviously cases 

in which baffles or vanes of some type should be employed.    While outlet 

vanes may be used for control,  no particular problem of efficiency is 

involved.    In the design of inlet vanes, it is imperative to employ the 

existing potential theory.    (See reference in present volume,  Section G. ) 

Tests performed as part of the present study confirm theory and show 

remarkably high efficiency.    (Sections H and I. ) 

Design MeJ lod:   Design baffles according to potential theory as indicated 

in Section G.   In complex cases experimental work may be needed. 

5.    Interaction of Ducted Propeller and Wing or Fuselage 

This aspect is of importance in regard to the required control 

forces, lift,  drag,  and general performance of the aircraft.   The first 

item of concern is the pitch-up moment.    Numerical values have been 

given in Ref.-Al,  Volume I,  Chapter II for a sink in a rectangular plate 

and in Chapter III for the classical case of a two-dimensional line sink 

in a wing. 



Design Method:   To obtain pitch-up moment, employ the simple formula 

given in Ref. Al,  Chapter II.    The pitch-up moment arm is given in 

Chapter III under the formula 111-21, 

There is also a lift increase due to induced circulation on the 

wing which can be estimated with sufficient accuracy by formula III-18 

of the same chapter. 

6,    The Effect of the Jet on the Lower Surface of the Wing or Fuselage 

This subject is of more empirical nature and represents the only 

area which cannot, for the most part,  be covered by theory.    The only 

exception is the direct displacement effect of the jet on the pressure 

distribution for the lower surface of the wing or fuselage.    This subject 

is treated in the present paper in Section E.   Due essentially to the high 

velocity on the lateral sides of the jet there results a negative lift in 

magnitude equal to the product of the velocity head times the area of the 

jet cross section and a negative lift coefficient approaching the value of 

unity,  if the adjacent flat area is large enough. 

Design Method;   Estimate extent of adversely affected area and employ 

negative lift and thrust coefficients given in Section E and shown in 

Figures El andE2, 

There is,  however,  a much larger negative contribution both to 

the lift and to the adverse pitching moment.    This subject has been treated 



in the present volume,  Section F.    The deficiency in pressure recovery 

which is the cause of the drag of a cylinder and which exists behind the 

jet produces a pressure-deficiency on the lower wing surface behind the 

jet.    Tests analyzed in   Section   F indicate that there exists a 

drastic decrease of lift and a large increase in the pitching moment. 

However,   since the drag of a cylindrical body is reduced to a fraction 

of its value beyond a certain critical Reynolds number,  it is probable 

that the effect is less serious than indicated. 

Design Method:     Yet inadequate.    Tests of pressure distribution at 

higher Reynolds number   (R >  10 ) are needed.   In the meantime, 

employ values of one quarter of the ones indicated from small scale 

tests in Section F. 

There exists a few cases in which the theoretical treatment is 

either too laborious or inadequate.    In conjunction with a design of any 

consequence,   certain complimentary experiments could be carried on to 

considerable advantage. 

The first problem concerns the matching of the propeller to the 

duct.   A simple experiment may be performed, the purpose of which is 

to establish the flow pattern of the duct-inlet at zero forward velocity. 

This test is most conveniently performed by attaching a cylindrical 

extension of some length to the model duct outlet to remove the local 

effect of the suction device.   Measure the velocity distribution along the 



radius of the duct at the proposed plane of the propeller.    This is also 

an excellent case in which the electric analogy may be employed.    The 

advantage is that the effect of the viscosity or Reynolds number is then 

completely eliminated.    Thus a very small model may be employed to 

represent properly the condition of the actual flow at a high Reynolds 

number.    The matching propeller can then be designed.    Testing of a 

model propeller will not be necessary.    The model duct should be of at 

least one-foot diameter to insure reasonable Reynolds numbers in a 

typical low speed wind tunnel. 

The second experimental problem concerns the empirical effect 

of the obstruction of the jet on the flow pattern on the lower side of a 

wing.   As has been pointed out,  the deficiency in pressure recovery 

behind the jet causes a loss in lift and creates an additional unfavorable 

pitch-up moment of some magnitude.    In addition,  the jet exhibits a 

pumping action on the lower side of the wing tending to aggrevate these 

effects.    To obtain numerical values of the loss in lift and the adverse 

pitching moment and to investigate means for improvements,  a fan-in- 

wing model test should be run at a reasonable Reynolds number and the 

model should be equipped with means for measuring the pressure 

distribution on the lower surface as affected by the jet in the range of 

forward speeds corresponding to transition. 



SECTION   B 

THE IDEAL LOADING OF SINGLE-ROTATION PROPELLERS 

IN A CIRCULAR DUCT 

I. INTRODUCTION 

In this problem, the flow field of a single shrouded propeller is 

examined. The shroud is considered as an infinite cylindrical surface, 

and the velocity potential function d) which describes the flow within 

the shroud is determined. Use has been made of Sydney Goldstein's method 

in solving the boundary problem for the ideal case of a single rotating 

propeller. 

In this case a two-bladed propeller will be considered and the helical 

surface produced by the propeller is given by 

0 " Cd-K    —L. r 0     M^   ^ (1) 
0 y i-vj 

where r, 9 and z are the cylindrical polar coordinates with the helix 

axis as the reference axis« The axial displacement of the spiral is w 

and the expression for the slope at any radius r is 

^« = 4^^ (2) 

Thus, the velocity normal to the surface is 

W   CCKL o<    =   ——     C/KL.Ö< ~ -~z~r   A^ <*. (3) 
OK /L d y 

The above boundary condition is given for the helix surface only for r < R 

where R is the radius of the helix. The boundary condition for r = R 

is that 3 (j) /3r - 0. 



Changing the variables   r, 0   and   z   into    n   and    f     given hy 

and taking into consideration that     T   0 constant^ gives a spiral line, 

the three-dimensional problem reduces to a two-dimensional one.    From 

Eqs.   {h)t one obtains the relations 

^ :=   v+w a^        so " aj (5) 

Making use of Fq. (3), we find the following for the boundary conditions in 

the (p., V ) system 

./  4 — =0 ^x^o=—-^   (6) 
3^    iy*"     CO      '  ^      ^ -^ 0 Vtw 

Substituting the following function for the velocity potential 

w 
CO 

^  =: (j) (7) 

the boundary conditions become 

The differential eouation for the potential 6     in conventional cylindrical 

coordinates is given by 

^  ' JL/^IIV^. ^|^=o        (9) 

From EQS. (II) and (5), we obtain the following relations among the partial 

derivatives of the function ü>    in the two coordinate systems: 

-JL ~ _L_ 2      co   9 
3 0 "" 3 ^ S-g """ V + w  3 ^ 

-ll - -il a2 _ / co Y _^1_ 

10 



^a a2     / ^J \2   a1 (J±X 

Substituting for the above relations in Eq. (9),  we find the Laplacian in 

the transformed {\it K )    coordinate system 

Thus, the problem of the flow field of the shrouded propeller is given 

by the solution of the partial differential Eo. (10) with the boundary 

conditions given by Eos. (8), 

II. S0LITTI0N OF THE POTENTIAL PROBLEM 

Since it has been assumed that the shroud is a circular cylindrical 

surface extending to infinity, we are interested in obtaining only the 

flow field in the region r < R. Changing the dependent variable into 

z 

% -jT^yi (ii) 

the above Ec- (10) becomes 

From Eos. (8), the boundary conditions for the function Q>       are given by 

-|4- = o     $ -^-1   = 0 (13) 

Expanding the independent variable     \     on the "right-hand side" of Eq.   (12) in a 

Fourier-series for the interval    0 «<   V ■<< rr   we find 

0 Z 'TV    %Z0      C^^i-i) 

1.1 

  (Hi) 



Assuming a solution ^ ., which is expanded in the form 

and substituting both Eqs. (Hi) and (1^) into Eq. (12), we find the following 

by equating the coefficients of cos(2m+l) \   , 

Since the potential ^   is finite at r ■ 0, the above Eq. (16) gives 

V      S" *(^-fr; (18) 

Using for the function   f ((i),    the expression 
m 

^(^-i(I~r\7^r-h(^] (19) 

and substituting into Eq.   (17)> we find the following differential equation 

for   g (n). 
m 

(^grh-^"^') ('^^(»^^ti)^1    (2o) 

A particular solution of Eq.   (20) is 

v/here    t      (z)    is given by the series 

•7 "31 "? 

and'   v ■ 2ra-M & z = (2m-t-l)|j,, 

12 



We define a new function   T (fam+lla). 
l,2ra+-l L  J 

\^J^^Hf^)rlz^~+f)-\Jb^y)     (23) 
Then the above function T      is also a particular solution of Eq. (20), 

1,2m+ 1 

The general solution of Eq. (20) which remains finite on the axis, (i.e., 

[i " 0)    is thus given by 

^ ^= ^J^+ü/) + ^ i^.(([^^H (210 

Substituting into Eq, (11) for \  from Eq. (U4), for 6  from Eo. (1^); 

for f  from Eq. (18), and for f  from Eq. (19), we find 
m 

i 
CO 

/  7r ^ ^ ^0 (Z^H)7 ^J^) co^-(2.^ + 1) 5 

(2^) 

= z 
/T^SO 

± ;  ., ^v;,V,7;;r^ 

Since the function   (f     is an odd function, it is obvious that for the 

interval    -TT <•   A    "^ 0,    we find the same expression for  G   with the 

opposite sign.    At    ^   = 0   or   TTS    the potential function   (2   has a 

discontinuity which is given by 

(2^-M)' Air, ^ O 
(26) 

The unknown coefficients   a     are determined from the second of the 
ra 

boundary conditions given by Eq. (8). Differentiating the above Eq, (25) 

with respect to p,, we get 

24 
CO 

a^   ^-o   Or      (2/Mti) ^   1^     (Ovs + j^wJ ^ /       ^        ^  (27) 
Erivii"/ 

.13 



Making use of Eq.  (27), the boundary condition given by the second of Eqs, 

(8) gives 

(28) 
Z/^tJ 

Substituting Eq. (28) into Eq. (2$),  we get 

Thus, the velocity potential cp from Eq. (7) becomes 

^(2^t)^29) 

^j^MlA^r. 
TC^X «nso 

T' C&^-M^) 

(2^-rl)2" 
(30) 

Similarly, the jump of the velocity potential at    C   ■ 0   or   rr,    given by 

Eq.   (26) becomes 

[§> 
8*1 V-t-w) 

TZCJ 

CO 

z 
/wiro 

I    9 /W\a.   I ^ 

^tl)z    |^tl      Z
7    I'^i-lK)   2-1-1     /^ (31) 

III. VEKICITY FIELD 

The velocity field within the shroud is formed by the gradient of the 

velocity potential, i.e., v ■= v d) • Making use of Eqs. (i|) and (5), we 

find the following for the velocity components in the cylindrical coordinate 

system 

% * «.de ) oi.. 
a<f) 

In the    ([i, S   )    system, the above equations become 

(32) 

a_ = - CO 2>$ 

^' ViiA/   3/^ ) Ö     V+w /^   3^   )        §"    Vtw  d^ 9/^. 
(33) 

14 



From Eos, (33), it is obvious that 

^ = V ae 
Differentiating Eq.   (30) with respect to    S     and   n,    we get respectively 

Z^i-fl 

/^       TT^       ^,0    ,j2/yv>+|     /       j/ ([z^+Q .J   ^i,       T^j    (2/m+l)     (35) 

From Ers.   (32),   (3l) and (3^),   the velocity components   u . u     and   u 
re z 

become 

* " TT ^o ^^^      ^1 (36) 

u.^— —,    ^   /\   (/VA) ~-^::~ 
0 vTTy^      -=o     - / 0/^      2^t/ (37) 

5      ^r    —o ^^A^   ^tj (38) 

where: 

V^^f ^^[^l-lj/Mo)      Z^t, /> (^0) 
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IV. LOADING FUNCTION- 

The loading function K(r) is a dimensionless quantity defined by 

^ '     2>r(Vtw)w 

where p is the number of blades or helix surfaces and f (r) is the 

circulation which is equal to the potential difference across the helix 

surface at the radius r. 

From Eq. (31), the circulation f" (r) becomes 

8*/ £/+*} 4 

Introducing the   dimensionless quantity 

and making use of Eq. (hi), we get the following from the above Eq. (Ij2) 

where 

CO ^^ ^_ 

The momentum within a volume confined between two successive vortex 

surfaces become 

JJU JJArecK J )(\ 

where   f"    is the circulation function for one blade and   A    is the area of 

the projected cross-section of one turn of the spiral, which is equal to the 

cross-section of the shroud.    Introducing again the dimensionless quantity 

t ,    the momentum per surface per turn becomes 

16 



= pOrw •— VR    ^i- 
/zOr /•/ 

K^o)tö^e- (17) 
o     ''o 

Tims, the mass coefficient for single-rotation propellers is 

27r n 
w = 

7r K^e)^^^0= 2   K^wr (ii8) 

Substituting for K(T) from Eq. (Uli) into the above equation, the mass 

coefficient becomes 

-.2 

U/  - ^ 

JT 

CO 

(-.«)M ]TJ?-']^r) /ji^+i 

1   (DwO^)    2--H        v+',/   ' 
2.^+1 

(19) 

From Eqs. (Iili) and (It?) for the loading function K and the mass 

coefficie.io /u > we find the design relations of a propeller. 

17 



V. APPEOTIX 

So long as p, is not "boo small, we might make the following approxima- 

tions. The functions T      given by Eq. (23) are approximated by 
l,2ra-j-l 

T 
IZs^ + l 

Thus, its derivative will be 

(A-l) 

r 2y" 
«M. 

From the approximate relations 

I 
- Z /y\ 

Zw-fi l* 

^ ^/i+ZA2,   (Z/vnf/ f 2/n) 

l< in ^ - / l-f 
2^ 

y. 

we find 

1; 2./^t; 

^/wi-t-l 
V'^ 

(A-2) 

(A-3) 

(A-li) 

Solving the above eouations for    I .    we find 
2m^l 

I . - e 
^{ly^tJ* ^t(t+*l)l 

(A-5) 

and its derivative becomes 
2^f I 

y^/lt^ +^C^+i/^)l 
(A-6) 

18 



Equations (A-I?) and (A-6) are approximated by 

(A-7) 

i!    * Jit/? t 
2^ + 1    V / 

im)tl        p- 3 

(A-8) 

Making use of Eqs.  (A-l),  (A-2),   (A-7) and (A-8), we find the following for 

the functions   A (p. ,ii)    and   A'  (|i ,[i)    given by Eqs.  (39) and (ijO). 
mo no 

2/wifl 
^/ /+, ■y 

A   f^^^Jl L.   ^.   .S  
^^ »^    ^   ^+/ (^^     ä^.^ (A-9) 

2/^-f 

AlC^oy-)^-- 
y^ ^c 

IV^11 

^.1 l(l>-^ (y^ ■" ^•>0/^ (A-10) 

Substituting Eqs. (A-9) and (A-10) into Eqs. (Uj) and (Ii9), we find an 

approximate estimate for the loading function K and the mass coefficient 

su,    of the propeller. 

Similarly, Eqs. (36), (37) and (38) will give an approximation for the 

flow field within the shroud» 
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SECTION   C 

FLOW FIELD FOR NON-UNIFORM SINK DISTRIBUTION 

IN A CIRCULAR DISK 

I, INTRODUCTION 

In the Interim Report Number 7 of contract DA liii-177-TC-606, the flow 

field for uniform sink distribution in a circular disk was derived. In this 

paper the case of non-uniform sink distribution will be examined. For 

simplification, axially symmetric cases will be considered and a step-wise 

constant distribution over circular rings will be assumed. 

Figure Cl 

The ca^ ; of a uniform sink distribution in an annulus is found as a 

special case, by considering the strength of the sinks in the central region 

as sero0 

The flow field of a propeller in an annulus of an infinite plate is 

then represented by a uniform sink distribution at the annulus and a 

superposition of a uniform flow in the semi-infinite region of the cylindrical 

annulus behind the propeller. 

Finally, the case of a continuous and axially symmetric sink distribution 

is examined which is expressed as a polynomial of even powers of the radius r . 



II. VELOCITY POTENTIAL 

For the case of only one step in the distribution of the sinks, 

we have the following 

V, 

~V 

V, dv,-v 

J£. V, 

i^-R- 

Rl 

Figure C2 

From the velocity potential of a point sink of strength    cT Q   and 

an angle   a <* 90°   at a distance   r     from the origin, we have 

^ (SQ) 

Figure    C3 

JH^0>: 
>1 

<  t 
(1) 
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In FigureC2the step-^dse sink distribution can be considered as 

the algebraic summation of two uniform sink distributions over two co- 

axial disks of different radius 

Thus, in the above case, the velocity potential is found as follows: 

Region A: r j> R, 

For   r> Rp i.e,,    r/r0 > 1, the velocity potential, for the sink 

distribution of strength   cTQp along the axis of symmetry   0 ■ 0   is 

found by integrating Eqs. (1) from   0   to   R^,    i.e., 

7 ^i(-^)p»^o^ (a) 

Integrating and substituting   J"Q. xrr   R.    ■ Q., we find 

h^^lkL-^T^ (3) r 

where 

Q = zrRfVj ih) 

Similarly, 'or the second uniform distribution cTQ- from 0 to R , 

we get 

J     tTr-  ^rox r/ n  0 0 ' (5) 
SO 

Integrating and substituting   Q0 
ra   CTQ   X TT R   , we find 

c <. o 
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where 

Q2 = 27rR0
zV, = zr/?/(v,0 (7) 

Thus, for r > R. the velocity potential along the axis of symmetry 

becomes 

^.M^f-$ = 
A 1 xz z.Tr f:0    hi-z <?( Hi-r.^^r 

(8) 

Since the flow is axial Symmetrie, the general solution of the 

Laplace equation is given by 

hto 
n=o (9) 

It is obvious that the velocity potential in the region r pp-R, for any 

angle 6 is given by 

^(r,e)=i*v|0 - Z Q\\ 
RA" -Qil^4) |^(^e) (10) 

(ii) 

Region B:    r < R0 

For   r <; PL we have that ^   o 

i-/r0   ^   1 for       o < ^0  < r 

r/r0 <   1 ^r       r < ro < R0 

Thus, the velocity potential,for the sink distribution of strength   cTQ,, 

along the axis of symmetry   9 ^ 0   is found by integrating Eqse (1) from 

0   to   r   and from   r   to   Rn,    respectively, i.e., 

f,M-rr- |  OT P. (") ^c ^ ^ 
(12) 
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Performing the integration, we find 

-1 
(13) 

where 
so it,     öO 

r=o 

Similarly, for the second sink distribution of strength «TCL, 

we get 

n-1 

Thus, for   r < R     the velocity potential along the axis of symmetry 

becomes 

CJ^    2nri 

(Hi) 

P2      ht2     \R, 

or 

(15) 

Q^       Q2 

^a      ^ (16) 

where 

gu.gi. . iM y _ 2IEJMM. Z. 27rv 
R;a   f?.z" f?,z ,1 Re2 (17) 

Making use of EQ., (9), since the flow field is axially symmetric, we get 

i £>)/ Q. 
Ah-""2 9r ^.-J 

i Qz 
o ni-T   o "fi 

25 
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From the sum (see Interim Report No. 7) 

K*o      K-1  K+-2 

and from Eqs, (9) and (18) ve have that the velocity potential in the 

region r < R0 for any angle 6 is given by 

(19) 

^(t)n-^(tj]^-e) 
(20) 

Region C:   R0< r < R1 

For   R0< r < Rj   we have that 

r/r0> 1       for      R0< r.< r 

r/r0 < 1      for       r < r0 < R1 

Thus, the velocity potential^for the sink distribution   cTQ-i» along the axis 

of symmetry   0 ,a 0,    is found by integrating Eqs,  (1) from   0   to   r   and 

from   r   to   Rn, i.e.. 

^^^l     ^£(^)^(0)^^t 
'O   ^o 

fR^ fit 
SQ< 

Jr    JD      ^ 
l(^)PJo)r0ä^ 

(21) 

Performing the integration, we get 

^ »V ^o (nH) 
2KH-t   /. 

^1 

n-i 

(22) 

26 



Similarly, for the second sink distribution J'Q«, we have 

or 

iLM= 
Qz, £ W R0" 
2?r ^70 ni-z. r^i (2h) 

Thus, for R0< r < R^ the velocity potential along the axis of symmetry 

becomes 

$£M =§,-$, = Ir ^ 2    ^— 
nz.0 n-1 nrz. -(t) 

n-1 

(25) 

or 

2^?,   ^    n-f     ^1 -y 
co Q.    £ ^(^/-RoA0"1 

2rf?0 rr0 *+z \r 

(26) 

Making use of Eq,  (19), the above equation becomes 

^ h^-^i-k) \ v ^i 

J5i- (27) 

_Qz_      3      Pn(°)   /^T^ 
27rR0  Ä"o    nt2L   V r / 
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Thus, the velocity potential in the region   R0< r<R1   and any angle    9 

becomes 

2^ ^    n-1 (RIV   2^R0 flü    n*z   \r J    ^^       *) 

(28) 

III. VELOCITIES 

The velocity components for the three regions. A, B and C, are given 

from the derivatives 

a$ 
ar= ar 

3| 
(29) 

Region A: r > R-, 

From Eos. (10) and (29) we find 

u 1—, y  n±JL p ,0\ ^h^rh^) 
1     ' ^ ? p^0> Po\n 

Q(m"-^(^) 
(30) 

Region B:   r < R 

From Eqs. (20) and (29), we find 

(31) 

p / nrio 
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Region C:    R0 < r < 1^ 

From Bqs. (28) and (29), we find 

Tdiere 

"^    ""    <   >^|j^^   r'^ WiJ   ' ^Z- o   i=o 

(5(^0) 

(32) 

(33) 

IV. STREAMFUNCTION 

From the continuity eouation in spherical coordinates, i.e.. 

1 j3 
r  ^      ^    rA^e   a 9 V 0      v r AW9 

the streamfunction is defined as follows 

at 
ar = - E-TTr UA ,ovyw( 

|^ = Z7rr2urx>^e 

So that the flux is given by 

1       a^ 39 

Ok) 

(35) 

(36) 
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Region A:   r>R1 

From Eqs,  (35) and (30) we have 

2    00 S±2 
(37) 

^M^-j 
Integrating we get 

^(fr-^i f'/"> (38) 

Differentiating the above equation with respect to 9, we find 

^ ^2   F„io) 
dQ        h=-l ^^+2-) Q^J-^ R0r 

2XXAVGC^ö4^-^3e^^ 
"/ 

or 
*/'" 

ct-ju3. 

(39) 

n=1 *(*^) 
Q, M.o sr ^T ^f-^ypv w 

From the second of Ens, (35) and from the first of Eqs. (30), we have that 

01) 
39 

CD 

=->-& Z ^ P. (°) Qi(^-^(^r ^A) 
Comparing Ecs. (1(0) and (hi) and rearranging terms, we get 

fz*j*j ez Pn(0) 

r, = 1 ^(^2.) 
Q^-Q: ^.r^r 'o-z^-^f ^MP.h 

Z-J(Q)~^ol.(QrQg} 
ih2) 

Since the differential eouation in the brackets is equal to 0 the above 

equation becomes 
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/'(«)= 
QrQz 

/O^ 0 
(Ii3) 

Integrating, we get 

^(6)=2c2i(c^etq) 

vhere the constant   C,    is evaluated from the oondition ^ (0) ■ 0 for 

0 ■ 0,    Consequently, 

And Eq,  (38) for the streamfunction in the region   r ^ FL    becom«s 

m 

rA(r,e) = ^(^6-.)-^|S^)-^ 
■fir ^ ftov m£ 

\d/ 

(15) 

(16) 

Region B:   r < R 

We follow the same procedure as that for the Region A, 

From Eqs,  (35) and (31), we have 

a^ 
3r - - - 2-7rr o-n /&^Q 0 

Integrating, we find 

(U7) 

^-    r^nk/^-^V^^-^^ HAN 

Differentiating the above eauation with respect to    9   we get 

(n-i)(h+l) do       ■   V2.^"R}r^ o/   h=o 

n-| 

du 
Z-oUvöco^ö 

,   ^   '   3       ^^c-       g (0) 
o=o   (tT-<;(ht7 

Q.I /r\nM  Q 

R^^l/      ^ (tr 
(19) 

äzPn 

du} +p 
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From the second of Eqs. (35) and from the first of Eqs. (31), we have that 

Comparing Eqs. (Ii9) and (^0) and rearranging terms, we find 

CO 

r A^BZ. 
»     Pn(oI 

rTo    M("+0 
Q>|    / p \h-1     Q^ /   p n-1 t\^ dPn \Mp-^ 

f n(in-fl)^(^) 

(51) 

= 1(9) 

Since the differential equation in the brackets is equal to 0, the above 

equation becomes 

Integrating, we get 

}iey- =c. 
(53) 

where the constant C?, is evaluated from the condition ^(0) ■ 0 for 

9 ^ 0, Consequently, 

^(e>q= = 0 

And Eq, (l+G) for the streamfunction in the region r <R becomes 

rR(r,e)-r2^ 

(51;) 

(55) 

Region C:   R0 < r < R^ 

From Eqs.  (35) and (32) we have 

3^ 

A4 

5i 
^ h-1 UJ   +f?0

2 ^0 ^tzUy 
^P. 
iyx 

32 
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Integrating, we get 

%*~rz^l%* zR. 1    L^i f?ia ^o MM 
(57) 

Differentiating the above equation with respect to 9 we find 

-rfejQl c<^ 

^ 
.2A^'0co^ö+ 

(58) 

+r^e 

or 

ae 

(59) 

From the second of Eos.  (35) and from the first of Eqs.  (32), we have that 

at ? 
30 c7 (60) 
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Comparing Eqs. (59) and (60) and rearranging terms, we get 

/C ^^^ 

"O^^-^^^M^]^^)^ 
(61) 

Since the differential eouation in the brackets is equal to 0 the above 

equation becomes 

Integrating with respect to 9 we get 

^e)=C3 (63) 

where the constant C  is evaluated from the condition ^ (0) for 6 - 0, 

Consequently, 

^(o)=C3 = 0 m 
And. E<j,  (57) for the streamfunction in the region   R0< r-< R_    becomes 

Wt, a\      7**1 HI 2J   ^. Pn(0)   / rt'1  Q^ ^    Pn (o) / RoV^ äß  , Q^ 
y (65) 

V, SINK DISTRIBUTION IN AN ANNULUS 

For a uniform sink distribution in an annulus with internal radius 

R  and external radius R, the flow field is derived by putting V ■» 0 

in Figure 02. 
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Thus, from EQS. (33), we have that 

ZKRf     2lrRö
z      ^ = V.HV (66) 

SubsUtuting for Q1 and Q  from Eq. (66) into Eqs. (30), (31) 

and (32), we find the following for the velocity field in the regions A, B 

and C, 

Region A:   r > R, 

"^i^rM&r-m pn(c^e) 

ae=-VA^Ö 1   P— 
n=o nt-z. 

Ri\nrz/Ro^tz 

cLu. 
(67) 

Region B:    r < R 

CO ^t^m-^-T ^(c^e) 

n-f    /  w \n-1 ^Sltl 
d. y* 

Region C:    Ro < r < R1 

(68) 

,      f 

R0 Nnt2 

Kis^$)\ 

CO ^Pn 
(69) 
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Similarly, substituting for   Q,    and   Q«   from Eqs. (66) into Bqs. (16), 

(55) and (65), the streamfunction in the Regions Ä, B and C becomes: 

Region A:   r ;> R, 

tA (r1e)=27rv|^t^i(c^O--0-'^Zöl. 4^" 

R,Z(4-J-^(^J 
Region B:    r < R 

tß(r,e)=-^vrwe|;4^ 

Region C:   R0< r ^R-j^ 

f!(.rto 
^|/  "^o/      (    ^u 

ft^-^wfe^feJlA^lf^*' 

(70) 

(71) 

(72) 

VI. PROPELLER IN AN ANMULUS 

The flow field of a propeller in an annulus of an infinite plate 

might be represented by a uniform sink distribution at the annulus with 

strength enual to twice the normal velocity at the propeller plane. 

At the sink plane there are symmetric radial flow velocities and 

a uniform axial velocity. 

Thus, the flow field in the region above the propeller is represented 

by the Eqs. (67), (66), (69) and (70), (71) and (72). 
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In the region under the sink plane, an annular jet emerges vith an 

increased total energy due to the energy added by the loading of the 

propeller. 

For this region, a solution to the potential flow field might be 

found by adding a uniform flow of double the axial velocity, in the 

cylindrical annular region with cross-sectional area equal to that of the 

annular sink. 

Thus, superimposing the annular sink flow field to the uniform 

velocity field, we get a flow field which has an annular jet with a contraction 

ratio equal to two. 

At infinity, the mass flow from the annulus of the plate is eoual to 

the mass inflow from the cylindrical surface due to the sinks. A sketch 

of the flow field is given in the following Fig, C4. 
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Figure C4 

Streamlines of a propeller in an 
annular opening of an infinite plate, 
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VII, CONTINUOUS NON-UNIFORM SINK DISTRIBUTION 

For axial symmetric non-uniform sink distribution we have that the 

strength of the sinks is given as a function of the radius r . i.e., 

Figure C5 

1. Velocity Potential 

The velocity potential is found as follows: 

Region (A)  t   r > R, 

For r ;?• Rp i.e., r/r0 > 1 the velocity potential for the sink 

distribution of strength q(r0) along the axis of symmetry 9-0 is 

found by integrating Eos. (1) from 0 to R., i.e., 

-^^{-r-l^^d^dCi (73) 

Integrating with respect to 6 we find 

'R 
m 

m-o 

Expressing   q(r )   as a polynomial in   r     we have 

/   \     N 

a.    r (75) 
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Substituting Bq.  (75) into Bq.  (7li) we get 

Hit) n=0 (76) 

or 

(77) 

v^iere 

a x      i K r   =   bK 

Performing the integration, we find 

nco Kio 

or 

^ CD ^ U P ri'r,< 

(78) 

(79) 

(80) 

v^iere 

A^TTR 
(81) 

Making use of Eq. (9) for the general solution of the Laplace equation, 

we have that the velocity potential in the region   r >■ R.    for any angle 

0   is given by 

(82) 

Region (Bj   s   r < R^L 

For   r < R-,    we have that «i 
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r - > f for   o < ro < r 

(83) 
r < 1 for    r < r < R, 
o 

Thus, the velocity potential, for the sink distribution of strength   q(r0), 

along the axis of symmetry   9 " 0   is found by integrating Eqs, (1) from 

0   to   r   and from   r   to   R-|    respectively, i#e,, 

|M=    i^&.mp^^^d9 
Vr-r ^ ra ™ 

>        ^.IW^^^ 
JT        So 

Substituting for q(r ) from Eq, (75) and integrating with respect to &    , 

we get 

r] ^^L^)n^^ 

Making use of Eq, (78), we find 

T H 

ifno)-^   Lb^fLWp^)^ 
K-o *--* 

o 

■f?. a 
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Interchanging summation and integration, we get 

|(no)-fipn(o)ZbKr/
P(^P^(^) 

CO 

.ii^oibj ^r^ (87) 

Performing the integration, we find 

fM=r.Zp„wZ^ 

CO   . M 

-(^) 

n-K-i 

+ 

(86) 

where 
*# Z' =Z 

(89) 

For k 

and 

even, i.e., (k* ■ 2k), we have an even polynomial for q(r ) 

P. (o) = P  (o) = o 

Ems, Eq. (88) becomes 

(90) 

^O^IZFA^ m 

And the velocity potential in the region   r < R-^   for any angle   9   is 

given by 

2^1?, 

OO 2 
M 

n=ö («»0 Mio K»0 
•2K-I (*)P(^8) 

A     ^* 

Ü 

aTrP, TTio z>„wz^(i-r^-^^«) (92) 
H»o 
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where 

P       =P 
(93) 

The velocity components for the two regions are given from Eqs, (2?) 

and Eqs.  (82) and (92) respectively, i.e., 

Region @   J   r :? R, 

"K= - i^£ Pn^),4 ^^ b" ^) ^-K ^^ 

6C/i-- 
6~   zTTr n = 0 K;e 

Region (|)   :   r<R1 

A 

A, 

(n=0 Kao "=•0 KaO 

zTrP' 
l_     p (o /    -^  (~C-J\ p c^Q) 

(9li) 

n-i:> K=O *n-0 K»o 

(95) 

■h 
2.7rR 

20    Strearnfiinction 

The streamfunction for the two regions is found from Eqs,  (35) and 

Eqs.  (9h). 
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Region ® : r > Ri 

From Bqs^ (35) and {9h),  we have 

(96) 

Integrating we get 

where ,»      >     « 

htiK^O ^g) 

Differentiating Eq, (97) with respect to    9,   we find 

A 

(99) 

From the second of Eos. (35) and the first of Eqs.  (9h), we have that 

(100) 
CD 

Comparing Eos.  (99) and (100) and rearranging terms, we get 
N 

+ (h^K)(ntzK+^+zKU-^(0)-i:A|be^.e 

^WirZK     j. 
CUM 

(101) 
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Since the differential equation in the brackets is equal to zero, the 

above equation becomes 

Integrating, we get 

//fö)=-7Alb0(c^6+C4f) 

(102) 

(103) 

where the constant Ci is evaluated from the condition ^(0) - 0 

for 9 ■ 0, Consequently 

C^-i (lOit) 

And Eq, (97) for the st.'eamfunction in the region r > ^ becomes 
ii 

Region (Bj : r < R, 

From Eqs. (35) and (95), we have 

K=o c^u 

(106) 

Integrating, we get 

rf"1   ^ 1     ' 2^ 
2.    i?,1 2;P(0)2;^~^2:*V(O)Z-^ 

/?,- 

(107) 
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Differentiating the above equation with respect to   9,   and subitituting 
,.-2 sin' 0 - 1 - cos2 0 - 1 - |i2, we find 

d9 \r\:o KiO 
2C4^Q 

I?1        w^ro     ^   ^Sto fn-iK+|)(n-2K-i)AR / 
n-aK-l 

(108) 

MZ/.^-O-X)^^ ^w 17" «y* n:(e) 

From the second of Eqs, (35) and from the first of Eqs. (95), we have 

that 

CO 

R: K-.o 

b2K 

N 

-2K    / r 

(1®) 

-r^^-erV^wZ ^^-(^'""'fa^ f?.1K(c^«) 

Comparing Eqs.  (108) and (109) and rearranging terms we get 

,2    ^i 

*,' 

(UO) 

(i/;—^-v £^.+(«-^(n-.K^o^j/.) U; (e)=o 
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Since the differential equation in the brackets is equal to 0, the 

above equation becomes 

]!iQ)--0 cm) 
Integrating, we get 

^^ = C5" (112) 

where the constant C^ is evaluated from the condition ^ (0) "0 for 

9 ■ 0, Consequently 

^>Cs-0 (113) 

And Bq. (10?) for the streamfunction in the region r < R, becomes 

^   b. *H 
ä 

A CO 

— p —I—/ov^ 

A. 
2 

(lUl) 

^L     F*(0)L (n-z^)Uw) (T) 
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VIII.    SUMMARY OF EQUATIONS 

1.   One Step in the Distribution of Sinks 

iM^Z^K^-Q.^ w (10) 

PM (20) 

Vxi 'Ni (28) 

03   p 

0 
R.^  ^   /P.V^ 

Q,(^-^(- 
f^i 
^ 

(1»6) 

2J,_ 
R,1 

^ 

^ C55) 

tc,(r,e)=-i-,^e 
«9, 
f4c^M ^i i - ^ £ h(^) V ^, 

"1-1 71 te Q 

*/-   *\ d*   f?,2 
(65) 

2, Sink Distribution in an Anrmlns 

(70) 

^(.^-.^wöi^^-1-^ ^i?0) 
?C/A. (71) 

48 



(72) 

3«    Contlnnoits Non-'imlform Sink Distribution 

%M-^if>)I ^^p„„Kw (82) 

V'6> 2^R S^4^r^4^ (i)f?w 

A,    v*^. 
(92) 

" „ ?. 
¥r,e)=xAib8(^e.0.A|^^Pn(o)£?_^_(^«^r(io5) 

OJ/A 

V^iF^6 
N 

lp*(°*^^wl-" 
J^L 

•IK.-/ 

(m) 

^ 
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SECTION   D 

FLOW FIELD FOR CYLINDRICAL NGN-UNIFORM VORTEX SHEET 

SUMMARY 

In this report the flow field of a shrouded propeller has been inves- 

tigated by considering a vorticity distribution on a cylindrical surface. 

For high speed shrouds the vorticity distribution has been assuned on 

a cylinder with constant radius o  which corresponds to the exit radius 
o 

of the shroud. 

The vorticity distribution on the semi-infinite cylinder behind the 

shroud is considered constant and on the cylindrical surface of the shroud 

is approximated by a linear distribution and an expansion in Birnbaum series. 

The strength of the constant vorticity downstream from the shrouds is 

calculated from the difference of the exit velocity and forward velocity of 

the shrouded propeller. The strength of the vorticity distribution along 

the shroud is calculated from the condition that the shroud is a streamline, 

by solving a system of equations for the unknox-m coefficients of the terms 

of the Bimb-:::;. series. 

For an approximate evaluation of the flow field we might consider only 

th'3 first three terms of the scries and solve a system of three equations for 

the three unknown coefficients. 

Since the high speed shroud is always a smooth curve, three flow conditions 

at the leading edge, at the middle line and at the trailing edge, might be 

enough for a good approximation of the flow field by the first three terms 

of the Birnbaum series« 

The flow field, the pressure distribution and the forces along the shroud 

are determined from the calculated vorticity distribution. 
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I. INTRODUCTION 

In this report the flow field of a hi^h speed shrouded propeller is 

investigated by the method of singularity distributions. Since the hiuh 

speed shroud is a cylindrical surface with approximately constant radius, the 

vorticity distribution is considered on a cylinder with radius o R o " 
o 

constant. 

Making use of non-dimensional variables, we consider the shroud extending 

from   x = - 1   to   x "     1.    Fig, X)l, 

-^-u- ^<*= ^o 

4-oc    ^ 

Figure    Dl 

The vorticity distribution   Y(X)   on the cylinder   o ^ o     from   x = - 1 

to    x = oo     is not Icnoim and it will be determined from the boundary conditions 

and the flow at   x = ± oo  . 

From the strength of the vorticity distrihuticn, we determine the flow 

field, the pressure distribution and the forces along the shroud. 

The evaluation of the vortex distribution is facilitated by an approximation 

for the representation of the flow due to the propeller by a semi-infinite 
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vortex sheet of constant strength   Y r5 Y     from   x=+l   to   x"+«)     and 
o 

Y 
a linear distribution Y B p- (^+ x) in ^e  interval xo-l to x " -+• 1. 

\«. 

V v'- —-^X- 

Y. 

Figure D2 

 ^ 

In addition to the above vortex sheet, the effect of the shroud is 

represented by expanding the vorticity distribution in Birnbaum series 

of normal functions in the interval   -1 ^ x -g: + 1, 

Thus 

where 

n=.| (1) 

^)= S/E 

rn Y2.W=  Czfl^ 

Y3 (^ =   03 x f^- 
(2) 

For an approximate evaluation of the flow field we night consider only 

the first three terms of the above series, and the vorticity distribution 

becomes 
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W-^Ot^C(ff|| +Czf^*C3'y,{i^rz j^-l^^f 

V (*) =■   ^c ^ X ^ oo (3) 

II.    FLOH FIELD OF A VORTEX RING 

The velocity for the flow of a vortex filament of strength   'YdsT  is 

given by ^P 

(h) 

where   R" is the polar vector from the vortex filament to the point   P. 

For a vortex ring with radius   p     at the plane normal to the x-axis 

at the origin, we have 

where 

Figure    D3 

ZK 

V   = 

o^-C*    d(f*\ 

(5) 
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Tims,.-the velocity becomes 

\ 

(6) 

Figure    D4 

From Figs. D3    and D4   we have, 

K   = x +■ p. -p. r-e« 

R *■--*+ f  * ^ ~   Z{> f>Q   <J&((f~(f) 

Thus,  t:;e cross-product in Eqv (6) becomes 

% — ^x f 
or 

(7) 

_y -J, _^ 

.-.•nere    en,   e^  ex are the cylindrical unit vectors and 

(8) 

ee x   ^ = ^ > ex ^ = ef 
->     -^     -^ 

55 



Substituting Eq. (8) into Kq. (6), we get 

v= ^■< 

p+/+p.i-iff.)«*(<f.-<f)] 1 ^^ 

Since 

and 

^ *  ^ =l C<^ (^o-^) 

M  (p^ >*) =   "\    + tr?« 

we have that 

V - ex = ^ 

And the velocity components in the x and p direction ape 

a = 

v = 

f*- 

-/Tr 

L * - 

•2^r 

X C^L' fe-») 

''Z+(»2t fo^-ZCfo'^-C'f."'?) 
^-^, 

From the identities of Beseel functions (Appendix), we have 

'     sjxl 
e    '    J, (sp) J Csfe) 5^5 E 

2.7r 
Po - e c*4- ö' 

2.7r ■e%eoSxj-2efoo«.e'JÄ/i 
^e' 

md 

a»    -s* 

(9) 

(10) 

(11) 

(12) 

±)     6 1,(^)1,(5^)5015 5 

27r 

("f"   for   x>0) 
("-"   for   x < 0) 

(13) 

* c**-Q' 
ZTT [e^^tx2-Zf f.c^T ^ 

o^e1 
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Making use of Eqs.  (12) and (13), the Eqs,  (10) and (11) for the velocity 

conponsnts due to a vortex rin~ of constant strength   y   and radius   p 
o 

at   x a 0t   become 

K        ,L K (ib) 

ej ,'ao '■5,^ 
vL^'-t—   e    J; cs^) i (sf0) 5dis 

G 

(15) 

III.    SH!!I-INFI'JI?E VOV^n SH^T ^ r = Y   f 

For a seni-infinite cylindrical vortex sheet of constant radius   o 
o 

and vorticity strength   yW " Y0    
in the interval   1"^ x-<ca,    the flow 

field is found by integrating Ecs.  [Ik) and (15) for   u   and   v   fron   1 

to co    with respect to   X, 

Thus, 

7   ^ 
0 

fee    p Y   f*   -sjX-V( 

Ji J* (17) 
("-f-,r for (x-x') >0, "-" for (x-x')<0) 

Fron  the evaluation of the integral with respect to x' we have (Ref,-Dl). 

,e    ^\   i/r-c^^nVv^) . w 
(18) 

Substituting into Eqs. (16) and (17)/ we find 
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•oo 
,(*-,) 

^M=-^    e        Jc (se) T, (seoys j*c** 

'OO 

CA. (e^-^  [< -sC*-0 1 
e        -2 J0^)J((sfo)^ x ^ 

(IP) 

tod 

v(p^)=- poiT s^ J, (sf) ^ (sfo) c^S ^ ^^1 

2/ 
oy   f00   -S(*-i) /; 

(20) 

Fron the above Eqs. (19) and (20), we see that for x—^ioo the velocity 

becomes 
'00 

u„ oo    2. e  J0 r^)^ (sf) ots = o 

Po^o -oo /"CD 

Jo 

or 

foo     -oo  fo ü0 
! 

0 

f-r^ 

(21) 

(22) 

IV. FIMITE mAHGm.A^ VD2Tg( SKEET J ^ - ll- A + x\ > 

For a finite vortex sheet of constant radius p  and strength ^(x)= il-A+x) 

in the interval -1 < x <£ 1, tlie flow field is found by integrating Eqs. (Hi) 
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and (15) for   u   and   v   from   -1    to   -f 1   with respect to   x. 

Thus, 

(23) 

-s|x-K'j 

^C^2 ± ^r  (,+x,}e      J.^^^^sotx' 
("+ " for   x - x' > 0,    "-" for   x - x» < 0) 

(2ii) 

From the evaluation of the integrals with respect to   x1    we have   (Ref. Dl) 

-sk-x' 
^/  = 

'-i 

2~-/^is 

■le /^^s% ->(u) 

|[l-e."Äc^i5x]U(v) 
f- l^^-^+l       (25) 

2. -^ Ao^Jii f- << 

And 

'+1 -s^-^( 
a e ^ = 

-l 

[2 VL?-^^5-^^5]]    A X^-l 

'$*'-l**4l     (26) 
l-|-[-^-te'i(it^)c<xi.i.sxJ ->(v) 

-sx 
fco^Js - —XW^lsll'   Joti^x 
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Substituting into Bqs. (23) and (21)  for u and v we find 

0 f j) /^^S - 00^5  J0 (^) J^ (sf0) ^ Jö^X^'1 

u =. eJc 
/•oo 

-S 

^ + i-e. [(iH)A.i SX +- Cty^X St i 'U^V5^ 
(27) 

6^. » 

And 

V -~ 

p Y    I      -S7< 

^| - i-j^ J 5 +. co^ ^5 I.^f)Ji^f.)^ 

tX 
6    l(n--f)x^wis-C<y^j5   Jj (Sf) J, (Sf0) o^s Jbt-Z-i 

V - 
eo^c 

oo 
-S 

CO 

S7< 

(22) 

(|"j)/<u^.J. 5 f-CX/^Js 

7.    FINITE VORTEX SHEET i K^) = C \/?~"   / 

Eor a finite vortex sheet of constant radius   p     and strength 
  .o 

^sci/^p~r in the interval -I^K^fj the flow field is found by 

integrating Eos. (Hi) and (15) for u and v from -1 to +1 with 

respect to   x. 

Thus, 
ti *c.  Z00 mz7~   -su-x 

u = eoci    .r^x 

-i 

e "'        ToCs^J/^s ^5 ^ 
(29) 
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'■hj (to 

7^7 e. Jj^I^fs^sdi cl-x' 
(30) 

(w+ "for   x - x' >0,    "-" x-or    (x - x») < 0) 

From the evaluntion of the integral with rpspect to   x'    we have,  (Ref,Dl) 

■ t( 

i/^r^"V= 

|-^F0(-s) 

-S5< 

y«-/ 

(31) 

/ ^r 

^^ 

-5^ 
e    FAs) 

where 

y f (V)1 

F^i^e" 1+-Z ^^)A, 
L    ^=/ *'■£ *S (32) 

r  -^i 

Substitiitin;: into Fqs.   (29) and (30) .for   v    and   v    the velocity field 

becomes 
r00 

Pocl «^ a a -^-U.   e   7rr0 ^5) J0 (5f) T (s^) scis a^- 
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CD 

'0 

t 

•J0(se) J.csfo)«^ •■-f^/x<.f1 (33) 

CO 

as •s^ ^«"V    eö 1rroCs)To(st)l(^)sds 4 K 

And 
00 

nr^-f^Ll   t^FJ^JCspj^s&scki ^ OC^-j 

PS -ys -isU. 

'oo, 

00 

c   '     sie, 
-U--Y-   e    ^ F0 W J ^e) re ^sfo) scis 1<K 

(3)4) 

For a finite vortex sheet of constant radius 0  and strength 
0        0 

v(x)^CxN/T-?in the interval -i^^^.-i-| , the flow field is found by 

integrating Eqs. (Hi) and (15) for u and v-.from -1 to -H 1 with 

respect to x. 
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Thus, 

u- pc,  f™ , ^   -slu-y'l 
^     f^e. j;Csf)j;(seo)solscU' 

Jo 
(35) 

^ti 

'"I 

«5 

21   /i^   e    ' 1,(5^)^5^)5^501^ (36) 

("+ " for   x - x» ^ 0,    "-" for   x - x! < 0) 

From the evaluation of the integral with respect to   x«    we have (Ref. Dl) 

Ir A (-s) e 
S7< 

Jt/LK<.~\ 

mi 

("+ " for   x - x« ^0,    "-" for   x - x,< 0) 

07) 

uhere 

f\ (*~)~- + ±. f    ^    ßr*"i ^ 
T- ZTi   tin    ^+1 

B.W^ (^r^yr ^IFT ß..,, C-0^) 
a i-K.K 

li  C-riKH)!   ^I^i   \^K/   ("--fiven) 08) 
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^i^i   f'o-     ^ 

K>0 A ̂ o 

Substituting into Eqs.  (35) and (36) for   u   and   v   the velocity field becomes 

e"^ r A (-0 J0 (sf) ^ (s^) sets a- -     f^i.' ^ y<-l 

roo 

u - eocz 

^0 

-S^ 

•he. AM^-^-'^-x^K'-^l Bn(-5)xn' 

'3"0(sf)J(sp0)sas <-~/<x<tl 

•oo 

^C 

fi-rl 

ir~ - 
(3C.-    / 3^ .o~Z a     7rA(-s) ^(s^J^s^sds 

^ ^ 

^<-( 

v 

sx 

e^      e"5JA(S)(^f ^ * + *^)-(i-<)3/l Z ß,(s)x^ 

- e 

m 

i>~ 
e.c 0^2. / e ,J ^A(s) J/s^JjCs^söU /<^ 
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VII.    FINITE VOP.TFY SHEET    l^(%) = C, ^{MFI 

For a finite vortex sheet of constant radius   p     and strength 

^fySed -x/px*.   in the interval  -/^'x^-hj      ,    the flow field is found by 

integrating Eqs, (lii) and (1^) for   u   and   v   from   -1   to    +1   with 

respect to   x. 

Thus, 

-si*-*'! fl roo 

(hi) 

-I 

as 
(w+»»for   x-x'>0,    "-"for   x-xl<0) 

Fro.- the evaluation of the integral with respect to X1 we have 

(Ref. Dl) . 

5X 

■rl 
,r~T -si*-*']    , 

-I 

7r P(-5)e ^^-1 

(" + " for x - x' > 0, "-" for x - x' < 0) 

>P^)e 
•s* 

f*~ l<-% 

(ii3) 
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where 

CO        zk-i 

Ca) = 5"     ^  , A 

^^-1^-2 
0   /<X\      5" «it ^ 

^t^K 

And   B^k A-. v   are Given by Eos.  (38). 
»j "■   .i :3k 

Substituting into'Bos.  (i|l) and (h2) for    u   and   v   the velocity field 

becomes 

-oo 

u-.^j  eSV P(-s) ro CK) $ (sf,) s^ -^ X S -I 

-'ft 

re 
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And 

v--^   e.5VP65)j;^)j((:s(o0)sa5 A^^-i 

v* eoc3 
^OD 

-soc, 

00 

For the representation of the flow field of a shrouded propeller by 

singularity distributions we determine the strength of the vortices fro:.; tho 

fact that the shrrmd phould be a streamline of the flow. 

Sine"- jnly hi~h .^p^ed «'hrov.ds are considered in this p^r,  the vorticit; 

distribv.tion has been assiued on a cylindrical surface of constant radius 

D     which corresponds to  the exit cylindrical radius of the flow, 
re 

The strength of the ser.i-infinite vortex sheet   v     is evaluated fror;1, 

the forward and exit velocity   u     and   u ,    i.e., 

0 C 6 -too -öo £, O 

The coefficients Cp cn) and c-, are evaluated fron the satisfaction of the 

boundary conditions on the shroud. Thus, for a number n of coefficients, we 

need a system of n boundary conditions. 
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In our special case with n = 3 we need three boundary conditions. 

It might be recommended to take the conditions atf-x^-^ Pap^-iy]  , 

L**©, f »£5(0)] , and ["^»Sfa^sC1)]  with the corresponding slopes. 

where the velocities V(X,D) and u(x,p) are given by 

o<   -    f 

Thus, we have 

Mdring use of ^qs.   (i;8) and (iiP),  Er.   (.'a?) becomes 

= -^o 

1 
i - «  = 0 

+ 1 

«» + 1,^^^ 

(1;8) 

a?) 

(50) 

Solving the system of Eqs. (£>0), we find the values of c , c  and c 

which determine approximately the flow field of the high speed shrouded 

propeller. 
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IX.    APPENDIX 

IDENTITIES OF BESSEL FUNCTIONS 

From the identity of the Bessel functions we have 

e.'**S (*[>) ds a>o (51) 
z 

'o 

Differentiating vith respect to    a,    we find 

*<* -so- ft 

9Ä ^VT2 =  (aV^)3/^ 

Substituting a by x and b by r, we have 

e     l(sk)sc(s (52) 

±     e       J (sr) Scii (53) 

where the    "+ "    r.i, r. ic for   :•: >• 0   and the    "-"    sign for   x< 0 

and 

L       v L   k (5Ii) 

Multiplying Eo. (53) by cos 9' "nd integrating from 0 to 2Tr with respect 

to 0' we g ■t 

Making use of the following identity for the Beseel functions 

jo(^) -- jo (Sf) jo (sfo)tz £ jn (^ !„ (sf„) c«* «e'        (56) 

and of the orthogonality property of the trigonometric functions, we perform 

the interration with respect to 0' and we find 

TV     J?~^d**i    e  WW* (57) 
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Similarly, substituting   a .by ,/x|    and   b   by   r   in Eq.   (51), we have 

(58) 

CO 

l/ySi 
e L(sr)o(s 

Differentiating Eq. (56) with respect to   p ,    v:e find 

i&) 

Integrating fron   0   to   2tr   with respect to   0'    we ^et 

[J.C-)] 06s (60) 

Substituting Eq.  (56) and interchanging the integration and differentiation 

in the right meiabor of the above eouation, we perform the integration with 

respect to    9'    and making use of the orthogonality property of the trigonometric 

functions, we find 

^[T,^)J.(sf.)]^ (61) 

Performing the differentiation with respect to    p ,    we get 

£  I W - '   SJ, (5fo) 
'f 

"ubstitating Eq.  (62) into 5-.   (61), wa find 

l^-.^re-^^i,^)^ 

(62) 

(63) 
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SECTION   E 

VELOCITY FIELD AND FORCES ON A FLAT PLATE 

DUE TO A CYLINDRICAL JET 

I.    Elliptical Cylinder With Major Axis Parallel to the Flow 

In this section the pressure is found on a plate parallel to the 

flow and normal to a cylindrical jet with elliptical cross section. 

Since the velocity of the jet is very high in comparison to that of 

the flow field around it, we consider that the jet is a rigid cylindrical body. 

The potential flow field around a cylinder with an elliptical cross 

section is calculated from the theory of conformal mapping,  making use of 

the complex potential for the flow field. 

For an ellipse in the   z (x, y) plane with major semi-axis   a   and 

minor semi-axis   b   the transformation 

3-^ + 
where 

-2. z. 

(D 

(2) 

maps the ellipse into a circle with radius   R »  ■»•   (a-/-b) 

\f u 
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'The complex potential for the flow velocity in the T -pl^n« is given by 

where  C is given by Equation (1). 

Solving Equation (1) for \ we find 

(4) 

where 

C^-   O^-i" (5) 
7, ^    / '2- 

Substituting from Equations (4) and (5) into Equation (3) we find 

2 6    "    ^/y^ 
Making use of the elliptical transformation 

(V) 

we get 

a^Coo^^J^-^ ^ C «h-i% ^~l~J (8) 

Substituting Equation    (7) into Equation (6) the complex potential for the 

flow velocity becomes 

F(y^ ^<c^(%^yJ + ^/^^H7j^  (9) 

■f j^LztiL. 
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Performing the algebraic manipulations and making use of the identities 

of the hyperbolic functions,  the above Equation (9) becomes 

rr?)= ^(J^^J-i,    (10) 
2   ; aa-^ 

^y 

Separating the real and imaginary part of the complex potential we find 

Thus, the velocity potential and the stream function in elliptical coordinates 

are given respectively by 

^7J- -2:/e^a^e J    I $11-])-- 'C.  ^+&~±   C   ^c^-rj (12) 

^ F -n)^ ^lA^V^ e _ ir!_^ ^ " >si^       (i3) 
' U        ^ o^i^ 

The velocity components become 

-1£ ^ 2Ü r ÜL fj- ^e'h c^v   (14) 

. __ i£ -_a£=- ^ /A ^.-ft^ us) 
7 ^7 f/   2v   c 
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where 

A    ~ C^fc^J?-^* c  Ui")*{ "f ~t£t'"t <7 (16) 

Since the flow is isoenergetic, the Bernoulli's equation gives 

.2, 
v2-- ^^t^^V 

1/ -i    Co^ s T^'viT' (17) 

where 

2- -2. > 

I     7 
(18) 

The pressure field on the plane normal to the elliptical cylinder is given by 

rn'.-^M (19) 

Making use of Equations (14),  (15),  and (18) the above Equation (19) becomes 

4x0 = T 
^     L/cV/LCf^t-^ 

U-^ 

e. w- 
c 4^ 

^2 
(q j_^) 

2. 

6 
sin'0?- ^^"7 7 

(20) 

The force on the plate is found by integrating the pressure field given 

by the above equation all over the plate outside the ellipse. 

For an elliptical plate with the semi-foci distance   c   as that of the 

jet and with major semi-axis A and minor semi-axis  B  the force is given by 

.& ^ 

L = //Ws,</% = /  / ^f / 
2 

(21) 

U 
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Substituting for    ArP   from Equation (20) we get r 
$ 

0 

2Jr 

4 
2-     C e^te)V^ 

.2- 
(22) 

+2^(^Yc~yw7 

Performing the integration with respect to we find 

1. 

^   '.^Yet^V^ 
-) (23) 

^ C 

Expanding the integrand in Equation (23) and making use of the identity 

2i^
2'r + ^-^-e "^e J 

;Lj-e-2f 

Equation (23) beconies: 

I 

L - - f L/Vc^ 
z 

Integrating with respect to   F   we find 

%^-i/a^ 

i-i^i^-tju 

(24) 

(25) 

-2^       ^/'     U6) 
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Since we have that: 

e ~  c^th    ) 

9 

-2&      /1-B 
/)^5 

the above Equation (26) yields 

2- 
L=-iL/V^/-^ 

(27) 

(28) 

And the lift coefficient becomes 

CL-- 

L Ot i     (.    fA-B^ 

jv^s 
i~ 

AS~*h /       u^ 

where S is the reference wing area 

(29) 

Taking as reference area   S     the area of the elliptical cylinder, 

the lift coeffi cient CL 
b( äcomes 

n 
L 

I u*$* u 
where   S     is given by 

S       ~   K Ot O 

(30) 
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II.   Elliptical Cylinder With Major Axis NormaJ to the Flow 

For an ellipse in the   z (x, y) plate with major semi-axis a   and 

minor semi-axis   b , the transformation given by Equation (1) maps the 

1 
ellipse into a circle with radius   R ■ z"  (a-f-b) 

>^X 
-a' 

M V 

Making one more transformation given by Equation (31) 

TT 

J =r 
- L 

■e 

we find that the velocity   U   is turned by 90c 

u 

(31) 

V 
V* The complex potential for the flow velocity in the   C    -plane is given by 

(32) 
"U 

r(S'hv{i%f)--i{I(H) 
where    \   and      T      are given by Equations (1) and (31). rand r 
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Substituting from Equations (4), into Equation (32) we find 

U ^>^fP*^~ (a+h) 

jir^' 
(33) 

Making use of the elliptical transformation given by Equation (7) 

and performing the algebraic manipulations, the above    Equation (33) 

becomes 

m^^J"l^\-t-7 
(34) 

Separating the real and imaginary part of the complex potential we find 

the velocity potential and the stream function in elliptical coordinates 

^7j = U< c 
a 

(Qt + 'o) 
1. r -t 

si'n. (35) 

f'lih' (36) 

The velocity components become 

1 ^i' 9t ~ 

a J     (o+k)     -$ 
— ii£.J-e,—^—^e    M'^7   (37) 

■^ 

2^ 

Cos.' (38) 
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Making use of Equations (37),  (38), and (18), Equation (19) becomes 

Af = f *K (^)\-^ 
c 

^ P (zth)Y^%-. c^ 
(39) 

7 
Substituting for Af from Equation (39) into Equation (21) we get r 

L = tV\ 
Iz* A 

^Yet^Te^ 
/- 

^   /. CV (40) 

Performing the integrations we find Equation (26), 

Thus, the force on the elliptical plate and the lift coefficient are given 

by the same Equations (28) and (29) as in Section EL 

For major semi-axis   b   and minor semi-axis   a   Equations (28), 

(29),  and (30) become respectively: 

L - - £u KOI ^-(s; 
CL-- 

Oi i 
t\Z-Oii 

i- 

X~ 
C 

L 

(41) 

(42) 

(43) 
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III.    Circular Cylinder 

In the case of a circular cylinder, the complex potential for 

the flow velocity is given by 

Ffo^+iy-U^f)*^^?*)    (44) 

Thus,  the velocity components become -^ 

u _0#  O^      7r    af,   ^) 
* ^t   ^)© v   /(i/       (45) 

Making use of Equations (45), the pressure field on the plate normal to the 

cylinder given by Equation (19) becomes 

"r-l^ff-2"^    "" 
The force on the plate is found by integrating the pressure field 

outside the circular jet.    Thus we get, 

?<      ZK 

L   ~   I Af ^^^ (47) 
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Performing the integration we find 

/_ = _2Jr|c/V ^ 
% 

-f.Vrt^fi-Ztjw 

and the lift coefficients become 

L 
C,   - 

L 

and 

Fus 

* L 

/>¥<<-*?) 

L 

Is 
(49) 

£u*S* pt*-Rlr 
(50) 

Lift coefficients   C^   and   C^ for cylinders with elliptical 

cross-sections are shown in Figures El and E2. 
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SECTION   F 

EXPERIMENTAL DATA ON 

JET INTERFERENCE EFFECTS ON VTOL AIRCRAFT 

The jet issuing from a VTOL aircraft such as the fan-in-wing 

type, induces pressures on the lower surfaces of the aircraft which in 

most cases cause a loss in lift and a nose-up pitching moment during 

transition.   Simple experiments designed to study the effect of a jet 

emerging normal to a flat plate placed parallel to an air stream,  and 

similar tests on a solid circular cylinder normal to the plate were 

carried out at the 7' x 10' tunnel at Langley Field.    These data have not 

been     published and were obtained through a visit by Republic personnel. 

The pressure distributions found on the plate are shown in FiguresFl  and 

P2 for the jet and the cylinders,   respectively. 

Positive pressures are produced ahead of the cylinder with rather 

high negative pressures to the side and rear.    Similar results may be 

seen for the jet with the exception that the negative pressures are higher 

and extend to a greater distance from the center of the jet.    The result is 

a predominance of negative pressure to the rear of the jet which in the 

case of  a VTOL aircraft in transition would produce a loss in lift and an 

increase in nose-up pitching moment.    Quantitative results for the two 

pressure distributions are given in TableH in coefficient form fo^ the 

front and rear halves of the plate area. 
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In the case of the cylinder the lift on the front half of the plate   (L^) 

is negative   (CT     r -0« ^1)   and acts at a point 1. 18 radii downstream from 

the cylinder center.    This checks reasonably with potential flow theory 

which indicates a lift coefficient of somewhat below -1.    The lift on the 

rear half of the plate   (L2)   is much more negative   (CT     = -5,59)   and the 

center of pressure of this lift is at a point about two radii behind the center. 

The total result is a negative lift of   CL   ^ -3. 1   acting at a point two radii 

behind the center, thus producing a nose-up pitching moment. 

The case of the jet is similar with the exception that higher values 

of the negative pressure peaks at the sides of the jet predominate to the 

extent that the pitching moment of the front half of the area   (M,)   in this 

case becomes negative.   Also, the total negative lift is about twice that of 

the cylinder and the total force acts at a point about 1 2/3 radii behind the 

center,   producing also a larger nose-up pitching moment. 

The higher negative pressures induced by the jet as compared to 

the case of the solid cylinder is attributed to a downward "pumping" action 

in the mixing region of the jet.    Measurements taken at static condition 

indicate a total thrust loss on the plate of only one percent of the jet thrust. 

The pumping action of the jet increases with forward speed due to the mixing 

action which is also responsible for the drag on the jet.    The coefficients 

CT    and   Cj^   are obviously related to the drag coefficient   Cn   of the jet 

as they are all produced by a negative region behind the jet.    The effect of 
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Reynolds number may be inferred from Figure F3 where the pressure 

distribution on the plate near the cylinder is compared with that on a 

cylinder taken from Reference Fl.    The drag coefficients   (C-QR^I. 3 

based on cylinder length and diameter)   obtained are characteristic of 

a laminar flow separation.    This is to be expected since the Reynolds 

5 
number is below the critical value of about 3. 6 x 10     (based on forward 

velocity and cylinder diameter).   For most   VTOL   applications,  the 

Reynolds number will be above this value and consequently a turbulent 

separation will produce a smaller area of negative pressure behind the 

cylinder.    If this reasoning is applied to the case of the jet,  smaller lift 

losses and reduced nose-up pitching moments are to be expected with 

larger forward speeds. 

In conclusion,   the values of lift and moment coefficients determined 

from integration of the pressure distributions shown in this report and 

the lift and moment coefficients from the momentum theory outlined in 

Reference F2 have been computed and the results are presented in Figures 

F4 and F5.   Also,   some experimental values from Reference F3 are shown. 

The losses in lift and the increase in nose-up pitching moment caused by 

the jet interference are sizeable and could easily explain the actual effects 

observed. 

The conclusions concerning jet interference which may be drawn 

from this study are: 
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1. The jet issuing from a VTOL may be regarded as a 

solid cylinder with a downward pumping action in the 

mixing region. 

2. The flow on the front half of a plate normal to a 

cylinder resembles a two-dimensional potential flow 

about a cylinder, 

3. The losses in lift and increase in nose-up pitching 

moment caused by the interference of a jet are large 

and do explain the deviations from momentum theory 

observed in experiments. 
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TABLE   Fl 

II 

CIRCULAR CYLINDER - R - 2      U*114 ^it    RN= 2x10? 

FRONT 
HALF 

REAR 
HALF 

TOTAL 

C -     L|>2 
-O.6I -5.59 ^^oTr/?1 -3.10 

c --   M^ 0.72 11.68 6.20 

M 
L 

-1. 18R -2.09R M 
L 

-2. OR 

JET   - v0/ve   = 0.3             p    =   27.2 'V 
FRONT 

HALF 
REAR 

HALF TOTAL 

0  -    ^''2 
-2.34 -11.66 -7.0 

-0.68 22.68 11.6 

M 
L 

0.29R -1.95R 
jM 

L 
1 

-1.67R 

MODEL AND NOMENCLATURE 

CYLINDER OR JET 
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SECTION   G 

DESIGN OF DEFLECTION VANES 

The design of a grid of turning vanes constitutes a part of 

the general   VTO   problem.   In particular,  it is understood that it 

is entirely undesirable to expose a propeller or fan to a flow at an 

angle with the axis even for a short period.   A system of baffles 

or turning vanes may,  therefore,  be required in any practical 

solution of the   VTO   problem.    We shall not, in the present paper, 

specify when or where such a baffle system is or may be required 

but merely give the design information required for the proper 

solution.    The proper use of deflection vanes is taken up in Section I. 

The basic conformal transformation for cascades has been 

known for some time.    (See Ref.  Gl. )   We shall in the following give 

the direct routine method for the solution of any given case based on 

methods given in Ref.  Gl. 
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In Figure Gl is shown a set of turning vanes.    Inlet velocity- 

is   w,   at an angle shown as  OC,   and an outlet velocity   w?   at an 

angle ^C    .    In general,  it is desirable to provide at least a small 

acceleration of the flow through the vanes,  which means that   w     is 

to be a little greater than   w     or the angle OC     is to be a little 

larger than OC? •    This also means that there is a small overpressure 

on the upstream side of the grid.    In fact 

f<-fi~if(w*-w?) 
This may also be written 

frfx~ £/>(
W

K- 
w>t) (i 

where w?,    is the tangential component of   w     and   w,     is the It It 

tangential component of  w    .    (See Figure G2. )   The resulting pressure 

force as can be seen is normal to the grid.    The force along the grid 

axis is further 

/^(Vt-K*) (2: 

where   w     is the velocity perpendicular to the grid axis and common 

to inlet and outlet» 

The right-hand section of expression (1) can be written: 

lf(wlt~^*)(v*t+^) 
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The geometric addition of the forces   (1)   and   (2)   therefore is: 

From Figure G2 it may,  however,  be seen that the bracket expresses 

the mean value of the velocities   w,    and   w^ .    Let the vector 

Then the force on the grid for a single element of width   t   and unit 

length is 

F=/'t (Vat-Wl-^W^ (3) 

This force is seen to be perpendicular to the mean or average velocity 

w_   as shown in Figure G2. m 0 

It is interesting to note that the circulation   |       can be read off 

Figure Gl as 

p=,  (iA^-w;t)t (4) 

This is true since the elements cancel everywhere except at plus or 

minus infinity.    Note that the force   p    |n Figure G2 points downward. 

Hence a counter clockwise circulation    | , 

Thus, finally p =z p P W^ 

P ~ p T Wvn   and        P    Ju    W^ (5) 
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with u/w,   ~     ^t + W2. wi 

It is at this point interesting to make the remark that this 

result is true regardless of the shape of the grid elements.   Since 

the force is perpendicular to the mean velocity the center of gravity 

of the vortex system is located behind the semichord of the elements 

in Figured, However, the exact location is not of importance as is 

the case for a single wing or wing section. 

It is desirable to know the value of the lift coefficient   C 

since experience shows that excessive values are not allowable.    We 

may write: 

where A.  is the chord of the element   (Figured). In contrast to the 

expression   (5)   which is an exact expression regardless of the shape 

of the element, the value of   Cy    as defined by Equation (6)   is strictly 

accurate only for small deflections and infinitely thin elements. 

In FigureG2it is seen that the value   w      is very much smaller e m 

than the velocities   w,   and   w0 ,    In actual practise the value of  w 1 2 r m 

would be made slightly greater than  w,   and smaller than    w?   to 

provide continuous acceleration through the channel.   The expression 

2 
(6)   where   C,    is based on  w        would» therefore, give the wrong 

impression of the realistic value of   C   ,   Since nevertheless we shall, 
JLi 
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for convenience, adopt the use of Equation  (6)   we shall remember 

that the real value of  C     is veiy much lower for large angles of 
JL 

deflection.   In fact, the velocity in the representative point may be 

defined as 

and one may write with the realistic value of   C 

P= ^l,p[ 
IWJ -f |v/2/ 

/ (7) 

where     w 
1 

and w. represents the numerical values of the 

vectors   w.   and  w^ 

Consequently, the "realistic" value of the lift coefficient is 

in terms of the fictional value 

W. + Wa 
CL =  CL 

-\2- 

Wj+/\A/2| (8) 

The ratio of the real   CT    to the fictional value is thus given by the 

square of ratio of the geometric sum of the vectors   w,    and   w     to 

the square of the arithmetic sum of same:   Since the angles     (X     and 

(X    in the cases of importance in   VTO   design are of approximately 

the same value, we shall employ the mean or average value OC 
m 

We have then approximately 
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where thus   ( 2C-~ c^m)   is one half of the total deflection angle.   In 

o 
the two cases    shown in the following the deflection angles are 27 

and 55     and the "real" values of   C      are therefore lower than the 

given artificial values by factors   cos    13.5     and   cos   27,5     or 

0.94  and 0.79,  respectively.   In the second case shown there is an 

indicated value of   C    =   1. 04,    the "realistic" value with uniformily 

contracting channels is therefore only 

C     -   1.04 •    0.79   s       0.82 
LJ 

Reverting to the artificially defined value of   C      (Equation (6))   and 
J-i 

using Equation (5)   one has the relation for   C      (without correction) 

VM 

EXAMPLES 

As experimental checking is proposed.we shall show two 

examples obtained by routine method from Reference Gl, Figure    G3 

shows a grid for a total deflection of 27  .    The angles with the normal 

are chosen to be 10   on the inlet side and 17° on the outlet side.,    The 

spacing   t  is taken as   30   m/m  and the projection of the chord 

_,£ s   40 m/m.    We are performing the routine calculation for circular 
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arc profiles.   The values of w    ,   w». ,   and  w,t  may now be 

immediately taken from a graph similar to that of FigureG2 and we 

have for   C 

CL  s    t- Zfaf^itj*   0.72 I W- >r> 

The only other value required is the radius of curvature of 

the circular arc section.    This is obtained by using FigureG4which 

is based directly on a routine method given in Reference Gl. 

One has only need for two quantities.   One is the mean 

deflection angle 

7 Z z 

The second is a factor   /U. which contains all the complications of 

the theory but which may be given in a single chart,  Figure G5, taken 

from P jference Gi. With   jSyr, =   3.5     and j[   a   0,75   one gets 

directly from this graph yd   s   0. 675,    This value is now used to 

find the angle "exaggeration" up stream and down stream by the 

following scheme   (see Figure G4) 

A-A - J (AT v.)- 0jj$ [^'*°) = ^ 



Thus 

ß     -   -16,5°    and  ß^    :   23. 5 

The mean radius of curvature is, therefore,    (see Figure G3] 

R=    A  '-       =   58.5in/m 
^      2 s/n 20° 

This is the value for the radius of curvature of a skeleton circular arc 

element.    In reality the channel will be designed for a gradual increase 

in the velocity,  thus being slightly thicker in the middle section.    The 

total deflection designed for 27    will be somewhat smaller as a result 

of the effect of a boundary layer on the upper rear surface.    The 

projected value of   C      =   0. 72   {to be corrected by a factor of   0. 94 

as above)   will be somewhat decreased in an actual experiment. 

Finally,  a second example has been worked through also based 

on the roi ;.:"ne method of Referenced.  The total deflection is here 55 

(see Figure G6), The projected chord length is again   40 m/m   and the 

spacing is chosen as   20 m/m ,    Repeating the same calculations the 

results obtained are shown in this figure.    The resulting radius of 

curvature is   33.6 m/m.   Experiments will be proposed to confirm 

the accnracv of the calculations and to obtain knowledge of the optimum 

efficiency possible by refinement in the design procedure. 
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SECTION H 

ieport=No^6j/2 

Experimental 

Inve3tination of a cascade of circular arc sections with and 

without a downstream channel 

[Project No. 6-C 3338 - 548722 of Republic Aviation Corporation, 
Panningdale, New York, U.S.A., Jan. 18, 196lJ 

Summary: 

A cascade of circular arc sections, which shall serve as a deflect- 
ion grid in a 55 -bend, was investigated by the wake traversing_ 
method. Measurements were taken with and without a channel down- 
stream of the cascade. 

It was found that, though the measured discharge angle fitted very 
well with theory, the losses were rather high. They still increased 
when a channel was installed behind the cascade. The reason is that 
separation occurred at the lower surfaces (pressure sides) of the 
blades. When using a downstream channel, the inlet air angle of the 
cascade decreased and separation increased. 

f -i r- + r, -F ist of contents 
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3) Method of test 

4) Discussion of results 

5) Conclusions 
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1 ) Introduction 

Deflection vanes are conunonLy u.r,:ed in bent channels to avoid 

wall separation and thus to reduce total head losses, per 

reasons of convenience, often blades of circular arc Gections 

arc used. This report presents measurements with a cascade con- 

sisting of such blades which is to be used in a 55  -bend. The 

geometry of the caacade had been determined theoretically. v/ith 

the aid of the wake traversing method the total head losses were 

measured, the discharge angle and the static pressure drop across 

the cascade were checked, and this both with and without a chan- 

nel behind the cascade. 

2) Symbols (see figure H2) 

b 

c 

d 

r 

y 

p( 

p 

q 

w 

li 

c D 

C = 
Porpo2 

^1 

Y 

Q 

n: =  1~C 

blade span (= 300 ram) 

blade chord (= 40 mm) 

distance between blades (= 20 mm) 

radius of camber line of the circular arc sections 

axis in chorUwise direction 

axis perpendicular to chordwise direction 

total head 

static pressure 

dynamic head 

flow velocity 

Reynolds number 

drag coefficient of blade 

drag coefficient of flat plate 

loss coefficient of cascade 

angle between flow direction anu a perpendicular to 
the cascade axis 

stagger angle, angle between cascade axis and a 
perpendicular to the chord 

density of the air 

dynamic viscosity of the air 

efficiency, of the cascade 
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Subscripts 

1 

2 

loc 

upstream of blade row 

QO'.vnstreara of blade row 

local value 

3) Method of .test 

The investigation was carried out with the small cascade tunnel 

of the Institute of Fluid Mechanics of the Technical University 

Braunschweig (director: Professor Dr. H. Schlichting). A view 

of this facility is given in Fi^HI. The inlet air angle could 

be varied by turning the big disk- to which the cascade was fixed. 

The geometry of the cascade had been detornined theoretically 

with the aid of potential flow theory. It is shown in Fi^HZ. The 

blades had circular arc shape and consisted of metal with a 

thickness of 1,5 mm, the radius of the camber line being r=33,6mm| 

The leading edges were rounded and the trailing edges sharpened 

thoroughly to get good airfoil sections. The blades were set 

with a stagger angle of y = 2,5°. The total deflection of the 

cascade was to be ocj   , thus the inlet air angle was ß. = 25°, 

whereas the discharge angle was expected to be ßp = 30°. Both 

the inlet and discharge directions formed an angle of 9° with 

the tangents to the camber line at the leading and trailing 

edges (see FigureH2). The chord length was c = 4-0 mm, the dis- 

tance between the blades d = 20 mm, thus the solidity d/c =0,5. 

The cascade consisted of 20 vanes. The blade span was b = 300 mm. 

Test was performed with an entering velocity of w. = 55 m/s 

corresponding to a Reynolds number of R, = 145 000. 

The probe used was a conical one of small dimensions. It allowed 

simultaneous measurement of total head, static pressure and flow 

direction. A photograph of the cascade and the probe is shown 

in Fig. Ha 

First of all the cascade was investigated alone. It was set with 

the design inlet an^le of ß. =25 . The total head loss and the 

discharge angle were measured behind the central blade at a 
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probe's distance of one chord downstream of the trailing ed^e 

at midspan position. They were taken as the mean values over 

one spacing of the blades. 

After this a channel of ^45 mm height and a length of its center 

line of 1,4 m (see PigureHZ) was installed downstream of the 

cascade such as to have a bend with a total deflection of 55 • 

Measurements were taken at a distance from the trailing • edge of 

x/l = 6,0 in the middle of the channel over three spacings. They 

revealed the amazing fact,that the losses were twice as high as 

without the channel. The measurements were repeated at x/l = 1,0 

to have a better possibility of comparing with, the data without 

channel. Total head loss was only reduced slightly. The} channel 

was removed again, and a new test was run at a lower Reynolds 

number of R< = 75 000, since it was presumed that the Reynolds 

number had been near its critical value with the tests before, 

and thus a slight change in flow pattern caused by the channel 

might have led to laminar separation of the upper surfaces (suc- 

liw;. jides). No particular rise of the losses was found, however. 

Bad directional setting of the channel could not be the reason 

for the high losses either, since it had been done carefully 

and since the cascade's discharge angle fitted very well with 

the channel's direction. 

An answer to the question could only be found by measuring at 

different inlet angles, i.e. by determining the cascade's polar 

curve. Thus additional tests were run with the isolated cascade 

at ß1 = 15 20°, 30° and 35° 

i.4) Discussion of results 
s 
/, 

The discharge angle fitted very well with theory, it was found 

I      to be 2^ = 23,5   ,   i.e. only half a degree less than was to be 
|  expected according to potential flow theory. 

The total head losses are presented in Table HI. The distribution | 

of the local loss coefficient j 

^porpo2Hoc c loc 1l 
(1) 
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■■'.i.z:\ ch^r.neu, as rneaüured six chords behind the ;;rid,. is shov/r. 

in FirtHj over three apacl.ngs. The wake of the central' bklde as 

rneasurea one chord downstrea;ii of the cascade is shown in Pi/^H5. 

As can be seen, the losses arc C, = 0, 18^ when usin^ the down- 

stream channel, but only C - 0,092 without it. In th-j first case, 

losses reduce slightly to C = 0,166 when measuring only one chord 

behind the blade's trailing edge instead of six chords. In the 

second case, losses increase slightly from C = 0,092 to C = 0,103 

when lowering Reynolds number from 1^ = US 000 to IL = 7S 000. 

Because of the latter result, separation ax the upper surface 

cannot bo an explanation for the considerable difference between 

the losses of the cascade without and with the channel. 

Variation of the inlet air angle showed that the reason for the 

high toss is a lower surface (pressure side) stall. This can be 

seen very well from Pi^KS, which shows the wakes at different 

inlet angles. IThe pressure sides of the wakes get larger with 

decreasing inlet angle, the losses thus increase. 

A bettor understanding of the unaerLying flow mechanism yields 

the polar curve of I'1ig.K6. The total head loss with channel cor- 

responds to the loss of a cascade without channel that has a 
o o 

7,3 smaller inlet angle, namely ß. = 17,7 • Obviously instai/ling 

a channel behind the cascade causes rather a severe change of 

its inlet angle. Thus the idea that'a channel downstream of a 

caücade does not change the flow conditions in front of the 

cascade, if only the channel slopes back with its discharge angle 

does not appear to be correct. Maybe it is with blades of much 

larger chord. But in the present case one must adopt another 

concept, namely, first of all, imagine a bent channel without 

any grid. The streamlines then will be curved in some particular 

way. When inserting a cascade, this will experience a different 

inlet air angle than if it were isolated, according to the al- 

ready existing curvature of the streamlines. Thus the change of 

the grid's inlet angle, when using a downstream channel, seems 

to be quite reasonable. This fact may or may not change the loss 

across the cascade, depending on its geometry. In the present 
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case it Led to a hiß  change, üince the inlet conditions of the 

grid were bad already at- the design ant;le of ß. = 2i>0. ltu:nvly, 

the polar curve (Pi^.H6) niiov/s that the blades' lower surfaces 

were stalled already then. The reason for this is the fact that 

the flow direction forms an an0
rle of 9° with tlio tar. : ■at' to the 

caiTiber line at the leading edge (sec Pig.H2}, lijus th . stagnation 

point being located at the blade's upper surface. Even a snail 

decrease of inlet angle •vill lead to a considerable increase in 

total head loss then. 

Pig.Hb shows also Lhat the cascade works rather far away from 

its optimum configuration which exists with an inlet angle of 

ß.j = 32 instead of ß. = 25 . The loss coefficient then is only 

C = 0,045 instead of C = 0,092. It does not appear to be very 

favourable, ho/'ever, to have the isolated grid ■7ori< at its' 

optimum inlet angle. Namely, as was shown by the experiments, 

the set-up with the channel then would work at a smaller inlet 

angle, i.e. in a region of higher losses, minimum loss with the 

channel, configuration will probably be attained at inlet angles 

^p the isolated grid that are 5° to 7° higher than its optimum 

angle, i.e. at about ß- = 38 . 

Pig.H7 shows the efficiency of the cascade plotted versus the 

inlet angle. It is defined by 

^ 1 - CD ' f  ' (2) 

In the case of a cascade with zero stagger (see Ref. HI) 

where 

^ = 1 - C 

PorPo2 c  = 
q1 

(3) 

(4) 

The graph of Pig.HZwas calculated with equ.(3) since the stagger 

of only Y = 2,5 can be neglected, 

Pig.H7shows also the efficiency of a cascade of flat plates with 

zero deflection ana when separation is not taken into account. 

It was found by introducing 
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3 0,0066     , 

.. .i.  .    i    -i .1     i- - ^>   i -. 1   L-   n r.r\r\ 

b) 

the vcilue for turbulent flow at a Reynolds nujaber of R. = II3O 000. 

The flat plate efficiency is 

Uwt = 0'<JQ7  • 
plate 

whereas the cascade's optimuin efficiency is y = 0,9^13 > and t.iat 

one at the design inlet angle is only 

yj =  0,903 

without a channel behind the cascade. 

Hu/^estionG for improvcrrient 

It is of no use, however, to increase the cascade's inlet angle 

since the total deflection would be greater than 55    in that case. 

Improvement can only be obtained by changing the cascade's geo- 

metry. The trailing edge geometry should bo kept the same because 

the discharge angle fitted well with theory. But the leading 

'"Kige geometry should be altered such that the flow direction and I 

the tangent to the camber line do not form an angle of +9 as 

ohey do with the present configuration, but an angle of -5° to 

-7 . The r;ot-up with the channel will work then just at the 

cascade1s optimum. 

Conclusions 

The Ions coefficient of a cascade of circular arc airfoils 'was 

investigated experimentally with and without a channel downstream 5 

of the cascade. The turning angle was checked. It was found that 

the discharge angle compared very well with potential flow 

theory. But the losses were rather high since the cascade did 

not work at its optimum configuration. The set-up with the 

channel yielded even higher losses since the inlet air angle of 

the cascade was shifted by the channel in an unfavourable way. 

The geometry of the cascade should be altered by leaving the 

trailing edge configuration, but diminishing the camber such as 
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to have an an^le of -5° to -7° between the flow direction and 

the tangent to'the camber line at the Leading ed^c, instead of 

+9 as with the present vanes. 

Lisj of fi/-;ures and tables 

?i;>.H} Cnai.l cascade tunnel of the Institute of IHuid mechanics 

of the Technical University Braunschweig. 

?ir.HZ: Notations with the cascade and geometrical relations. 

Fi...H3: Cascade and probe (photograph). 

^i.:»H4: Total head loss with channel measured x/c = 6,0 behind 

grid. 

?.ig. H5: ',7ake of central blade measured x/c 4 1,0 behind grid. 

Fi^-.HS; Polar curve of cascade, 

Fi,> H7; Efficiency of the cascade versus inlet air angle. 

TableHl: Resultant loss coefficients. 
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fig. n2 

a) Geometry of cascade: 

b) Cascade with channel: 

channel 

Profite of Blades: 

Circular arc section, 
with a thickness of 
1,5mm and a radius 
of r=55,6 mm 

r» 
L = tt-Dmm 
d = 20'mm 

d/c = 0,5     . 

Pz 
r 

= 25° 
= 50° 
= 2,5° 
= 55 m/s 

*i = MOOD 

Number of Blades: 20 
Blade span: b ^JOOmm 
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Fig. 3 
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Resultant Loss coefficients 
B.'alf Nr, ^ 

Z&Ä/f H^ 

A%7 

mthout channel 
x/c  =1,0 

R. 

15 

20 

with channel 
R7 =150000 

x /c 

1h50QQ\ 0.192 

nsooo 

25 
%5000 

0 %2 

75000 

JO 

0,092 

0,105 

1h5000 0,052 

1.0 

6.0 

0.1 56 

35 11,5000   0,053 

0,185 ^ 

''ms mine is the mean loss coeffident o/er three spadngs 
mis all the others were obtained o/er one spacing only     ' 

1     y- i- 

x/c: Distance of probe behind trailing edge in 
chordmse direction 
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SECTION  I 

COMMENTS ON CASCADE TEST RESULTS 

The tests made by the "Institut für Stromungsmechanik"   at 

Braunschweig,  Germany are of great value to determine the optimum 

cascade for use in  VTO.    It is to be stated categorically that a 

propeller or fan,  under no circumstances,   should be exposed to a 

non-axial stream.   Not only are the mechanical stresses excessive 

but also the efficiency of the propeller is drastically reduced under 

the very condition for which the highest efficiency is required. 

Propellers in ducts have been tested adequately for any and all 

purposes.    Nevertheless., there is,  of course,   still need for ordinary 

model testing as basis for actual design and construction of  VTOL 

airplanes,  in particular to insure compatability of the propeller and 

duct. 

With propeller-duct and ordinary airplane testing quite fully 

explored it was considered desirable to obtain design information on 

cascades as the only field not adequately explored.   It was for this 

reason that the present test series was conducted. 
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The experimental cascade had been designed from exact theory 

(Section G of this volume).    The test data revealed the interesting fact 

that the duct walls should have been eliminated.    In other words,  the 

cascade should have been tested as a free stream deflector or,  if in a 

duct,  the duct walls should have been streamlined.    Fortunately,  because 

of the extensive data,  including wake surveys,  it is quite simple to 

obtain the desired information on the efficiency of properly designed 

baffles.    The actual result may be obtained as follows: 

The channel on the inlet side which was present in all the tests 

forced a straightening of the flow (parallel to the walls) so that the flow 

enters the cascade near zero degrees instead of the theoretically pre- 

scribed 9     (see Figure H2 in Institute report).    As the flow is prevented 

from entering at the proper angle it stalls on the pressure side.    In fact, 

the highest efficiency is reached when the inlet angle    f3. -   approximately 

32     (see Figure H7)   which gives an angle of attack of the air with the 

leading edg^ of the blades of only 2   .    Notice the drastic reduction in the 

loss on the pressure side   (Figure H5 ) at /^ = 30  .    The efficiency reached 

about 95% in spite of the fact that one has now a diverging channel.    The 

cross section of the duct on the outlet side is proportional to   cos 25     and 

0 .866 
on the inlet side to   cos 30     or the ratio is     which corresponds to 

.94 

more than 7% divergence instead of the originally intended convergence of 7% 
0 o 

with the outlet angle at   ß.? 
a 30   and the inlet at    ^   = 25    (in reverse order). 
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It is proper to expect the test conforming with the theoretically 

prescribed inlet and outlet angles to give proper condition for the 

suction side (FigureHScurve for ^     ■ 25    without outlet channel). 

Further, it is proper to use the curve for /J     - 30    for the pressure 

side since this side is not too much affected by the divergence of the 

channel.    We obtain thus, from FigureHS by drawing an internal contour 

curve,  a rather accurate measure as to the loss in the ideal case.    This 

loss seems to be between 1/2 and 2/3 of that of the best case observed. 

o 
As the lowest loss measured (in the diverging channel with   /9 i a 30   ) 

was 4, 5% the ideal loss is thus estimated as 

/      s   2.25 - 3.% 

This compares with a skin friction loss of 1. 3% as the absolute minimum. 

We may,  therefore,   state in final conclusion that carefully 

designed baffles may reach an efficiency of 97 to 98%,    Thus such 

elements may be used freely for any purpose of directing the flow in a 

VTO airplane.    The incurred loss is much less than that caused by a non- 

axial inflow into a propeller. 

It is of interest to note that Dr. Schlichting had given the value 

of 98% as the expected value for the efficiency in the initial discussion 

of the contract negotiations on the cascade tests at Gottingen. 
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